Alpena Community College
Alpena, Michigan

Five-Year Capital Outlay Plan
2017-2021
Submitted October 2015

Table of Contents

I. Mission Statement
II. Instructional Programming
III. Staffing and Enrollment
IV. Facility Assessment
V. Implementation Plan
VI. Source Material: Economic Contribution Study
VII. Fiscal Year 2017 Capital Outlay Project Request, Attachment B
I. Mission Statement

The College Mission

The mission of Alpena Community College is to meet lifelong learning needs by providing educational opportunities through effective stewardship of resources.

The College Goals

(1) Present and position ACC as a compelling, attractive institution of choice for all learners

(2) Achieve excellence in program areas of transfer, occupational/technical, developmental, community and continuing education

(3) Serve as a primary center for regional economic development, diverse programming, recreational/wellness opportunities, and cultural enrichment

(4) Foster an environment of learning that embraces change, cultural diversity, personal accountability, and global thinking

(5) Conduct college business with a view to developing partnerships and alliances to expand learning opportunities

The College Vision

To be recognized in our local and global communities as the premier resource and first choice for exceptional, affordable, and innovative education.

The College Values

- We demonstrate **accountability** to all our stakeholders, students, staff, business partners, industry alliances, and taxpayers.
- We act with **integrity**, placing fairness and honesty at the center of all our actions.
- We aspire to **excellence** in all our endeavors.
- We show **respect** for diversity, individual contributions, and educational partnerships.
II. Instructional Programming

a. Existing Academic Programs

ACC offers the Associate in Arts and Associate in Science degrees for students who plan to transfer to a four-year institution after two years of study.

Associate in Arts Concentrations
- Anthropology
- Business Information Systems
- Computer Information Systems
- Criminal Justice
- Economics
- Education, Elementary
- Education, Secondary
- Education, Vocational
- English
- Fine Arts
- Geography
- History
- Liberal Arts
- Political Science
- Pre-Law
- Psychology
- Social Work
- Sociology

Associate in Science Concentrations
- Biology
- Chemistry
- Computer Science
- General Sciences
- Mathematics
- Natural Sciences
- Physics
- Pre-Construction Management
- Pre-Dental
- Pre-Engineering
- Pre-Fisheries and Wildlife
- Pre-Medical Technology
- Pre-Medicine
- Pre-Occupational Therapy
- Pre-Pharmacy
- Pre-Physical Therapy
- Pre-Radiology Technology
- Pre-Veterinary
- Psychology

The Associate of Applied Science degree marks the progress of students seeking employment after graduation from a variety of two-year programs. Current majors for the AAS degree include the following.

- Accounting
- Auto Service and Repair
- Business Information Systems
- Business Management

- Law Enforcement
- Manufacturing Technology
- Marine Technology
- Marketing
- Mechanical Design Technology
The Certificate award marks the progress of students seeking employment after graduation from a variety of one-year programs. Certificate awards are currently made in these fields.

- Apprentice – Electrical
- Apprentice – Millwright
- Auto Body Repair
- Auto Service and Repair
- Business Information Systems
- CAD/CAM, Advanced
- Construction Technology – Green Building
- Corrections Officer
- Customer Energy Service
- Industrial Technology
- Licensed Practical Nursing
- Manufacturing Technology
- Network Administration
- Small Business Management
- Utility Technician
- Utility Technician Advanced Certificate
- Welding Fabrication

ACC projects the following programming changes that are affected by structural considerations:

- Recently mandated discipline-specific accreditation guidelines from the Accreditation Commission for Education in Nursing and the State of Michigan have necessitated curriculum changes involving increased clinical hours. Because of these increases, ACC has hired three additional full-time faculty members while increasing intake of first-year students to 40 per year. ACC is looking to open up more places in our entering class, potentially up to a twofold increase. The first-priority capital outlay project request below connects with this direction, calling for renovations of Van Lare Hall to make it dedicated to nursing classrooms and laboratories.

- ACC has also moved forward with nursing pre-requisite classes at the Huron Shores Campus in Oscoda, and there are plans for nursing classes as well. The Huron Shores Campus currently has a small nursing laboratory with space for two beds. To continue with this set of initiatives, maintenance and replacement funds have been budgeted for renovations to make a second natural science classroom/laboratory space in the facility there, and a larger eight-bed LPN nursing laboratory is envisioned.
At most community colleges, the necessity of sending students to multiple stops across campus has been mitigated by organization of one-stop shop centers for delivery of these and other services to students. Based on documented better results, the renovation of Van Lare Hall to incorporate a Center for Student Success where necessary student support services are centralized makes sense for ACC and its students.

Three years ago ACC successfully launched its Marine Technology AAS program with focus on design, manufacture, maintenance, and operation of submersible remotely operated vehicles (ROVs). These devices have a multitude of industrial, scientific, military, educational, and regulatory applications. The program is conducted in partnership with Oceaneering, Inc., and the Thunder Bay National Marine Sanctuary.

b. Unique Characteristics

The Concrete Technology AAS program at ACC is one of only two in the nation. It operates out of the World Center for Concrete Technology on the ACC Main Campus alongside incumbent worker training and research/testing performed as a service to the concrete industry.

The Marine Technology program mentioned above is also nearly unique, with only a handful like it in the United States.

No other community college in Northern Michigan or the Upper Peninsula offers the range of manufacturing technology programs that are found at ACC, and the same goes for utility lineworker and auto body repair instruction.

For the cohort most recently measured in the US Department of Education Integrated Post-Secondary Education Data System, ACC’s overall rate of 27% of students graduating within 150% of normal time to completion is three points behind first-ranked Gogebic Community College and six points ahead of third-ranked Bay College.

ACC currently administers its fourth Department of Labor training grant over the past ten years, the current one for $2.50 million to intensify workforce development in the fields of advanced manufacturing, aerospace production, cybersecurity, and smart grid technology. ACC received the Department’s 2007 Recognition of Excellence award for the best community college implementation in the nation of training under its first grant. When the current grant began in 2014, ACC was the only stand-alone community college in Michigan to receive one.

Alpena Early College in collaboration with Alpena Public Schools is now in its second year. The first class of 35 juniors began work on a three-year schedule of annually greater amounts of credit from ACC resulting in both a high school diploma for them and an ACC certificate. Forty-two students enrolled in Fall 2015.
Last year ACC boosted enrollment in dual enrollment programs by offering discounted in-district tuition to all K-12 districts enrolling students in our classes. As far as we are aware, no other college in Michigan pursues this strategy for encouraging access by qualified high school students.

ACC is fortunate to provide a classroom and office on campus for a very robust Association of Lifelong Learners boasting 217+ members of all ages and over 160 presentations, excursions, and social events per year.

As for university partnerships, ACC participates in the new Michigan Transfer Agreement, administers numerous other articulation agreements, and performs reverse transfer functions for students who leave us before graduating to begin university study. In addition, ACC’s Madeline Briggs University Center brings bachelor’s degree programs in business from Northwood University, and nursing from University of Michigan – Flint so that local residents have access without relocation or long road trips.

c. Other Initiatives Affecting Facilities Usage

- Capital improvements including lighting and other forms of energy management led by two ACC officers designated as Sustainability Champions.
- Collaboration with the Alpena Fiber Ring Consortium and Merit Network, Inc., to expand broadband service to the Northeast Lower Peninsula.
- Intent to bring nursing classes to the Huron Shores Campus, which will entail a nursing instructional laboratory.

d. Economic development Impact

In general terms, ACC’s economic impact is documented by a study performed in 2006 by CCBenefits, Inc. The Fact Sheet is attached at the end of this report in the Source Material section. This document demonstrates that within the five-county college service area, the regional economy is $88.1 million stronger per year as a result of past and present college operations.

III. Staffing and Enrollment

a. Enrollment by Program with ≥10 Majors

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>MAJORS</th>
<th>PROGRAM</th>
<th>MAJORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apprenticeship Millwright Certificate</td>
<td>10</td>
<td>Pre Engineering</td>
<td>25</td>
</tr>
<tr>
<td>Automotive Service Certificate</td>
<td>10</td>
<td>Biology</td>
<td>26</td>
</tr>
<tr>
<td>Business Info Systems Adm. Asst.</td>
<td>10</td>
<td>Law Enforcement</td>
<td>26</td>
</tr>
<tr>
<td>Mathematics</td>
<td>10</td>
<td>Pre Physical Therapy</td>
<td>27</td>
</tr>
<tr>
<td>Marketing</td>
<td>10</td>
<td>Psychology - AA</td>
<td>28</td>
</tr>
<tr>
<td>Auto Body Repair Certificate</td>
<td>11</td>
<td>Education Elementary</td>
<td>29</td>
</tr>
<tr>
<td>Program</td>
<td>Credits</td>
<td>Certificate/Major</td>
<td>Hours</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Apprentice-Electrical Certificate</td>
<td>11</td>
<td>Accounting</td>
<td>34</td>
</tr>
<tr>
<td>Pre Pharmacy</td>
<td>11</td>
<td>Utility Technology</td>
<td>34</td>
</tr>
<tr>
<td>Millwright Technician</td>
<td>12</td>
<td>Licensed Practical Nursing Certificate</td>
<td>35</td>
</tr>
<tr>
<td>Network Administration</td>
<td>12</td>
<td>Business Administration</td>
<td>36</td>
</tr>
<tr>
<td>Pre Radiologic Technology</td>
<td>15</td>
<td>Welding Fabrication Certificate</td>
<td>37</td>
</tr>
<tr>
<td>CAD/CAM Tech (Machining Option)</td>
<td>15</td>
<td>Fine Arts</td>
<td>43</td>
</tr>
<tr>
<td>Electrical Maintenance Technician</td>
<td>15</td>
<td>Pre Medicine</td>
<td>44</td>
</tr>
<tr>
<td>English</td>
<td>15</td>
<td>Social Work</td>
<td>44</td>
</tr>
<tr>
<td>Pre Veterinary Medicine</td>
<td>16</td>
<td>Medical Assistant</td>
<td>45</td>
</tr>
<tr>
<td>Marine Technology</td>
<td>17</td>
<td>Registered Nursing</td>
<td>49</td>
</tr>
<tr>
<td>General Studies</td>
<td>17</td>
<td>Concrete Technology</td>
<td>55</td>
</tr>
<tr>
<td>Computer Information Systems</td>
<td>17</td>
<td>Utility Technician Certificate</td>
<td>58</td>
</tr>
<tr>
<td>Computer Science</td>
<td>17</td>
<td>Criminal Justice</td>
<td>60</td>
</tr>
<tr>
<td>Education Secondary</td>
<td>18</td>
<td>Business Management</td>
<td>78</td>
</tr>
<tr>
<td>Automotive Service Technology</td>
<td>20</td>
<td>Pre Nursing</td>
<td>176</td>
</tr>
<tr>
<td>Sciences General</td>
<td>25</td>
<td>Liberal Arts</td>
<td>280</td>
</tr>
</tbody>
</table>

b. Enrollment projections

Compared with the 2014 Fall Semester, credit hour enrollment fell by 6.48% to 15,138 and headcount by 6.58% to 1,506 for the 2015 Fall Semester. Between 2010 and 2013, headcount decreased by 13% overall at Michigan community colleges, falling from 260,175 to 226,255 students. At 18% ACC’s decline is somewhat higher. Our analysis points to reduction of unemployment from 15% to 8% over this period as the primary factor in causing enrollment decline. In 2010, when the recession’s effects were most intense, people who could not find work went to school as a back-up plan, and since the economic recovery, there has been an opposite trend. At present, ACC’s enrollment has approximated historic levels seen before the recession anomalously brought a greater number of students our way.

Over the next five years ACC will be dealing with a number of other factors that might cause continued enrollment declines. Population in Alpena County, the source of most ACC students, is likely to remain stable with an increasing senior citizen component and a decreasing youth component. In addition, tighter restrictions on federal Pell grants for low-income students has adversely affected enrollment at all community colleges. To address the local demographics, the college continues to follow an annually updated marketing plan, available at http://discover.alpenacc.edu/about_acc/docs/acc_marketing_plan.pdf. The plan calls for continuing proven strategies and also initiating new emphases on technical program recruitment all over the state, Huron Shores Campus students and Plus 50 Learners (students age 50 and older training new careers).
The concern about enrollment decline is based on the following graduation data from Alpena High School. About 65% of Alpena High School graduates attend ACC within two years of receiving their high school diploma.
c. Past ACC Enrollment Patterns

Alpena Community College
Headcount Enrollment History FY2003 - 2014

Fall
Spring
Alpena Community College
Credit Hour Enrollment History FY 2003 - 2014

Credit Hours

Years: 2003-2014

Fall
Spring
d. Ratios

From the 2013 Fall Semester through the 2014 Summer Semester, ACC generated 34,832 credit hours. This number divided by 31 yields 1,124 Fiscal Year Equated Students (FYES) by the Activities Classification Structure definition.

During the same period the credit students were served by 91 equated full-time faculty members. 52 full-time faculty members provided 63% of instruction by credit hour, with the remaining 37% provided by adjunct faculty members.

Thus, taking 91 equated faculty members for 1,124 equated students, we arrive at a 1:12 faculty-student ratio.

During the same period ACC’s General Operating Fund supported the employment of 17.75 administrators. (The other administrators were supported by grants or auxiliary funds.) This produces a 1:63 administrator-student ratio at ACC.

e. Future Program Staffing Needs

For programs affected by the capital outlay plan, no new full-time faculty positions are anticipated.

f. Average Class Size

Not counting independent studies or internships, average credit class size for fall semester of 2014 is 13.
Facility Assessment

Facility Assessment and Deferred Maintenance Capital Planning Report
2015 Update
Executive Summary

Introduction .. 1
Purpose of the Study ... 2
Glossary .. 2
Deferred Maintenance Backlog – A Brief Background ... 6

Condition Reports

College Information ... 7
Recommendations ... 9
Individual Building Reports .. 10

Copyright 2008 SHW Group, LLC
All rights reserved

The Facilities Assessment and Deferred Maintenance Capital Planning Report and associated database are instruments of service and shall remain the property of SHW Group. SHW Group shall retain all common law, statutory and other reserved rights, including the copyright thereto. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of SHW Group, LLC.
Introduction

Process Background
SHW Group, in conjunction with the Alpena Community College Facilities staff, performed an update to the facility condition assessment of all campus buildings in May 2008.

As part of the study, SHW Group staff interviewed campus personnel and performed a walk-through of each building. Existing conditions, maintenance history, potential problems, and projected life expectancy of systems and components (including structural, mechanical, and electrical systems) were recorded.

Collected information was analyzed to develop estimates of repair and replacement costs in a database format for record-keeping, long-range planning, prioritizing and cost projection.

This report contains the printed version of that database.

Condition Reports
Highlights of this data are presented in this section to provide an overview of the condition of the entire College, each facility, and major campus systems. Recommendations for funding, both immediate and long term are provided.

Individual building reports include additional detail and representative photographs of each facility.

Database Report Pages
The underlying data used to develop this report and the budgeting recommendations are included in the appendix. This is the raw data for use and regular updating by facilities staff. This information is also useful as a permanent record of conditions often retained in multiple locations, and as an “owner’s manual” for new employees.
Purpose of the Study

This Facilities Assessment and Deferred Maintenance Capital Planning Study, developed through a combination of personnel interviews, facility walk-throughs and building system analysis, was performed to accomplish the following objectives:

- Provide an inventory of the College’s facilities in a database format to be easily updated and maintained by college personnel and allow for quick access to facilities information.
- Determine the general condition of the buildings and grounds of the college and provide the data in a concise format, allowing quick determination of the current replacement value and condition of each facility.
- Determine a Facilities Condition Index (FCI) for each building and the college as a whole. The FCI is a benchmark index that rates the condition of existing college buildings and is used by facilities managers to quantify and prioritize deferred maintenance projects for capital planning purposes.
- Assist the college in meeting the goals of its Mission Statement through timely maintenance of the physical backbone of the college – the campus buildings.

Glossary

Vital Statistics
Basic building information—building use types (classroom, library, administration), year built, building area in square feet, and number of floors.

Observation Highlights
A partial list of field observations, highlighting major repair/replacement items and recently completed work. For a more complete list of field observations, see the individual building data sheets in the appendix.

Current Replacement Value (CRV)
The CRV is the cost to construct a typical replacement building in today’s dollars. The figure is based on the square footage of the current structure and the estimated current construction cost for that type of structure. Since some buildings are conglomerations of different uses (i.e.: classroom, library, administration) the CRV is based on estimated proportions of use types in each building. By the nature of the calculations and square foot construction costs, the current replacement value has a ±20% margin of error and will increase annually due to inflation.

Priority Issues/One Year Deferred Maintenance Backlog (1YR DMB)
The value of projects that have been deferred and require completion in order to safely maintain facilities and related infrastructure for their current use. The 1 Year DMB amounts shown are for items requiring immediate attention to fix critical problems. A long-term investment strategy should also include items that require repair or replacement within 5 years, thus avoiding the increased repair costs resulting from deferred repairs (i.e. leaky roof damaging interior finishes).
Facilities Condition Index (FCI)
Simply put, the FCI is the current DMB divided by the CRV. The resulting number is compared against nationally accepted standards and used to determine the condition of the building, campus or college.

The Association of Higher Education Facilities Officers (APPA) recommends that the FCI for any given building should not exceed 5% for the building to be considered in “Good” condition. The rating of “Fair” indicates that the building requires some attention to bring it up to standard, with some problems areas potentially requiring immediate attention. The rating of “Poor” indicates that the building needs urgent attention to prevent the existing problems from affecting other building systems and compounding future repair costs.

The APPA FCI Ratings, indicating the general condition of the building, are shown here along with the corresponding “traffic signals” that give a quick visual indication of the FCI rating.

Priority Issues/One Year DMB Excess
This represents the amount the DMB exceeds the APPA benchmark of a building with a 5% FCI – essentially the dollar amount to be spent immediately to reduce the DMB to attain the APPA rating of “Good”. In situations where a building is in better than “Good” condition (FCI<5%), the one year DMB excess is shown as zero.

For example, if a building has a CRV of $1,000,000 and an FCI of 10%, the DMB would be $100,000. This would leave a DMB excess of $50,000 – the amount to be spent to reduce the FCI to within the APPA 5% benchmark.

Zero-Five Year Cumulative Deferred Maintenance Backlog (5YR DMB)
Similar to the One Year DMB, the Five Year DMB represents the total value of projects that will require attention within the next five years, including those that fall under the One Year DMB. This value is included to help determine the investment required over the next five years to repair and/or replace problem items before they become critical.

The Zero-Five Year DMB is often more telling of a buildings’ condition than the One Year DMB, since the first year number focuses primarily on life safety, code compliance and collateral damage. Most maintenance issues are not so critical as to fall into this category but often become so within 5 years.

Looking at the previous example, if the building condition survey indicated an additional $250,000 in repairs from years 1-5, then the 0-5 Year DMB would total $350,000 (including $100,000 from the first year).

Zero-Five Year DMB Excess
Similar to the One Year DMB Excess value, this amount represents the investment to bring the DMB in line with the APPA benchmark of 5% of the Current Replacement Value. In situations where a building is in better than “Good” condition – a bit more difficult over a five year span, the five year DMB excess is shown as zero.

This number is a good starting point for determining budgets – it allows the college to see what to spend to bring buildings into the APPA “Good” range – with the understanding that complete elimination of the Deferred Maintenance Backlog is not a likely scenario.
DMB Equilibrium (Annual cost to maintain current DMB)
This is the dollar amount to be invested annually to keep the FCI (and DMB) from deteriorating – regardless of the current condition of the building.

Reusing the previous example, the amount required to maintain the FCI at current levels would be $20,000 annually (2% of $1,000,000).

The number is based on a nationally accepted rule of 2% of the CRV and assumes that building components have a 50-year renewal cycle and depreciate along a straight line. The assumptions were made to simplify calculations; in reality, building components DO NOT expire according to straight-line depreciation, and most components will require replacement within 30-40 years (excluding structure and foundation).

To restate – this annual investment will only maintain the existing FCI and do little or nothing to reduce any existing backlog.
Building Use Types
The table to the right shows building use types and their respective current construction costs per square foot used to develop this database. As some of these use types are not found on all campuses, not all use types are used in the database. These costs, based on regionally weighted, preliminary construction cost data provided by contractors, historical cost databases and data from RS Means and Marshall and Swift, are for typical college and university buildings.

<table>
<thead>
<tr>
<th>Use Type</th>
<th>Cost/SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>$180</td>
</tr>
<tr>
<td>Athletic</td>
<td>$185</td>
</tr>
<tr>
<td>Auditorium</td>
<td>$285</td>
</tr>
<tr>
<td>Classroom</td>
<td>$190</td>
</tr>
<tr>
<td>Kitchen/Food Service</td>
<td>$200</td>
</tr>
<tr>
<td>Lab</td>
<td>$280</td>
</tr>
<tr>
<td>Library</td>
<td>$185</td>
</tr>
<tr>
<td>Maintenance</td>
<td>$110</td>
</tr>
<tr>
<td>Student Union</td>
<td>$170</td>
</tr>
<tr>
<td>VoTech</td>
<td>$170</td>
</tr>
</tbody>
</table>

Building Components
The table below shows the building components used in the report. These are the basic components having a major influence on the replacement value of a building. The buildings were evaluated during walkthroughs with the facility personnel to determine how much of each component made up the CRV. It was then determined what percentage of each component required repair or replacement within one year, five years, ten years, and beyond. This data is used to determine the investment required to reduce the current and future deferred maintenance backlog.

<table>
<thead>
<tr>
<th>Category</th>
<th>Component Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>Structure</td>
</tr>
<tr>
<td>Envelope</td>
<td>Roof</td>
</tr>
<tr>
<td>Glazing</td>
<td>HVAC Equipment</td>
</tr>
<tr>
<td>Cladding</td>
<td>Plumbing</td>
</tr>
<tr>
<td>Mechanical</td>
<td>Primary/Secondary</td>
</tr>
<tr>
<td>Distribution</td>
<td>Lighting</td>
</tr>
<tr>
<td></td>
<td>Voice/Data</td>
</tr>
<tr>
<td>Finishes</td>
<td>Ceilings</td>
</tr>
<tr>
<td></td>
<td>Walls</td>
</tr>
<tr>
<td></td>
<td>Doors</td>
</tr>
<tr>
<td></td>
<td>Floors</td>
</tr>
<tr>
<td>Safety/Code</td>
<td>Building, Fire, ADA</td>
</tr>
<tr>
<td>Other</td>
<td>Site Repair, Ext. Light, etc.</td>
</tr>
</tbody>
</table>
Deferred Maintenance Backlog

A Brief Background
The problem of deferred maintenance at colleges and universities has been studied and better understood over the last decade. From an article by Dan Hounsell, in the magazine Maintenance Solutions, discussing how universities are addressing the issue of deferred maintenance:

“Maintenance management professionals, who once seemed to be one of the few parties giving serious thought to the issue, now have been joined in the debate by growing numbers of sympathetic voters and far-sighted facility decision makers.”

The Association of Higher Education Facilities Officers (APPA) concluded in a 1995 report titled “A Foundation to Uphold: A Preliminary Report” that the national backlog of deferred maintenance at colleges and universities exceeds $26 billion, up 27 percent from estimates made in a similar report from 1988.

$5.7 billion of that $26 billion backlog is classified as “urgent deferred maintenance” – projects that require immediate attention and that will cost far more if they are not completed within a year. Although spending this sum will eliminate current urgent needs, in only a few years there will be a new roster of items to replace them – if future budget planning is not undertaken. According to the APPA report, the current backlog “represents a threat to the capability of higher education facilities to support college and university missions.”

Other conclusions from the report include:

- More than 50 percent of all college types reported that deferred maintenance increased or stayed the same since 1988; only 25 percent reported decreases.
- 20 percent of the colleges in the study accounted for nearly 60 percent of the accumulated deferred maintenance.
- Public colleges typically have a greater deferred maintenance backlog than private universities, with 78 percent of the public research universities reporting an increase in deferred maintenance backlogs.
- By assuming that infrastructure deferred maintenance – site repairs, road and parking lot maintenance, exterior lighting, etc. – was not included in the figures provided by the campuses in the study, the estimated cost to eliminate accumulated deferred maintenance increases to $32.5 billion – with urgent needs increasing to $7.1 billion.
- When senior school administrators made deferred maintenance a priority, the institution made progress in reducing its backlog.

The most important point to remember is that even if universities and colleges spend these amounts, this will only eliminate the existing deferred maintenance backlog. There needs to be a coordinated, funded plan put into place at colleges and universities to maintain the condition of the facilities once they have been repaired – or time will again take its toll.
Vital Statistics:
Alpena Community College (ACC), founded in 1952, consists of two campuses. The eight facilities included in this report total approximately 319,000 square feet with a total Current Replacement Value estimated at approximately $59.6 million, with the oldest building built in 1957. The immediate general condition of the ACC facilities is “Good”.

This result is somewhat improved by the construction of new facilities which offsets the negative effect older buildings can have on the overall facilities condition index.

The three buildings contributing most to the immediate and longer term FCI values are the Besser Technology Center (BTC), the University Center, and the Huron Shores Building on the Oscoda campus.

Though the life expectancy of many building materials and systems has been reached, solid construction and good maintenance practices have helped to keep those materials (i.e., original windows, doors and certain HVAC systems) in as good condition as can be expected. However, in specific cases, some older systems including roofs, windows, doors and HVAC components are beginning to reach time for replacement.

Several areas of concern noted in the original 2000 assessment, including HVAC, lighting and ADA upgrades have been resolved since. Areas in need of attention include: water infiltration through exterior single-wythe masonry walls in newer facilities; older window and entry doors and related hardware; aging HVAC equipment; and roofing.

The average immediate deferred maintenance backlog and FCI for Alpena Community College is below the national average of approximately 7%, representing a manageable capital investment over the next several years. Most of the projected expenses at ACC fall into the category of aging systems.

This data, when compared to the accepted APPA benchmark, shows that Alpena Community College, when all buildings are viewed together, is currently in good condition. The next section of this report breaks this data down into a building-by-building review to clarify where attention is needed.

Priority areas:
Certain areas were noted and observed to be in need of particular attention. While listed on the individual building sheets, some of the more important issues are listed below:

Roofing: While roofing was replaced at the BTC, ponding water on the roof has occurred due to original, failed insulation. The Van Lare Hall and University Center roofs have reached their end of life and are due for replacement (These roofs have been replaced since the initial 2008 investigation).

Water Infiltration: The single-wall masonry construction at many of the newer buildings poses an ongoing maintenance cost and an immediate concern in several locations. One particular location of continued issues is at the Newport Center, especially in the arena, where penetrations and lack of wall flashing appear to have contributed to leaks and collateral damage. The World Center for Concrete Technology is also experiencing ongoing problems with water entering through the exterior wall into the main lobby.

HVAC: Many HVAC system components, particularly the boilers at the BTC and the AHU’s at Huron Shores are at or past the end of the useful life (the boilers at BTC are undergoing replacement, reflected in this report). Good maintenance practices have kept major repairs at bay, but funds to replace boilers, original air handling units, unit ventilators, and pumps should be set aside in the near term.

Windows and Doors: Original windows, including sealant and hardware - especially those at the Natural Resources Center and University Center - are noticeably deteriorated and due for replacement.
Concrete roof deterioration at the Natural Resources Center – reroofing may have stopped progression of problem.

Original vinyl asbestos floor tile deterioration and adhesive failure at Van Lare Hall.

Concrete plank roof shifting at Besser Technology Center – connecting cables are suspect.

Concrete block between upper and lower windows allowing water infiltration – flashing is suspect.
Summary
The jump from the “Priority Issues FCI” of 1.8% to the long-term “0-5 Year FCI” of 9.0% is typical for many campuses with 40+ year-old buildings. If conditions are not addressed, the future situation will require increasing capital investments, even to maintain conditions in their current state.

This predicted potential FCI increase is mostly attributed to older campus facilities with systems nearing or past their typical life. For example, due to their size, age and cost, the Besser Technology Center and the Huron Shores Center contribute over half of the College’s predicted 5-year deferred maintenance expenses.

As stated in the Deferred Maintenance Backlog background, the investment solution has two facets:

- The funds needed for immediate repair projects – repairs and/or replacements that will prevent further deterioration of the buildings and infrastructure and help the college stay ahead of life-safety concerns.
- The funds required to maintain and/or improve the condition of the buildings. These funds need to be budgeted in advance to allow for repairs at the appropriate time - before items become critical or cause additional damage.

The following pages of this report break this data down into a building-by-building review to clarify where attention is most needed.

Recommendations:
Short Term Recommendation
The College should review the items that comprise the One Year Deferred Maintenance Backlog of approximately $1.1 million and address those affecting life/safety issues, those having the greatest potential for future damage to other building components, and those that are code compliance issues.

In addition to the first year issues that will carry over into the next five years, the College should also immediately begin budgeting for the projected $5.4 million in cumulative issues over the next five years and evaluate alternative solutions where the cost outweighs the benefit of repair.

Long Term Recommendation
The College should budget as much as possible of the industry recommended “2% of CRV” maintenance fund of $1.1 million annually for ongoing repairs to maintain the buildings once they are upgraded. While this benchmark is difficult for most institutions to attain, the goal of setting aside this amount annually is to ensure the buildings remain in stable condition and that funds are available in advance when systems reach the end of their lives.
Facility: Van Lare Hall
Use Type(s): Classroom, Administration
Built: 1957
Area: 36,876 SF
Floors: 1 story

Observation Highlights:
- Building reroofed in 2008. (EPDM roof was at end of life, leaking and due for replacement)
- Surging of water levels in boilers periodically causes shut down due to low water.
- Unit ventilators in classrooms older, near end of expected lifespan.
- Poor ventilation, poor air circulation in offices.
- Several distribution panels at or near capacity.
- New 2x4 fluorescent fixtures in suspended ceilings installed in corridors in 2008.
- New suspended 2x4 lay-in in corridors, offices, 102 and computer labs.
- Exterior original full-lite aluminum frame doors at end of life. Original hardware failing and due for replacement
- Corridor and entry flooring removed and replaced (2009).
- VAT flooring in classrooms. Tile breaking apart and coming loose as adhesive fails.

Priority Issues

<table>
<thead>
<tr>
<th>ECI</th>
<th>FCI</th>
<th>DMB</th>
<th>DMB Excess</th>
<th>MAINTAIN DMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0%</td>
<td>26.1%</td>
<td>$1,433,673</td>
<td>$1,090,689</td>
<td>$137,194</td>
</tr>
</tbody>
</table>

Over APPA 5% benchmark

0-5 Year

<table>
<thead>
<tr>
<th>ECI</th>
<th>DMB</th>
<th>DMB Excess</th>
<th>MAINTAIN DMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.1%</td>
<td>$1,786,947</td>
<td>$1,443,963</td>
<td>$137,194</td>
</tr>
</tbody>
</table>

Over APPA 5% benchmark

Annual cost to maintain current DMB
Facility: Besser Technology Center

Use Type(s): Votech, Classroom, Kitchen/Food Service

Built: 1962

Area: 73,799 SF

Floors: 2 stories

Observation Highlights:
- Deck planks sagging, cracked – never tested to address structural integrity issue. Parts of deck falling at soffit. Bottom of block broken away
- Roofing: Durolast area showing continued signs of ponding. Some minor leaks at roof drains at built-up roof area.
- Window glazing compound brittle and cracked at windows, especially in 1972 addition, may require re-caulking/replacement
- Block wall sealant at exterior control joints at end of life., due for replacement
- Boilers replaced – summer 2008 with (3) high efficiency, pulse type boilers at a cost of $103,000 for units and $36,000 to remove existing and install new. Savings of $30,000/year with improved efficiency gives a 4-1/2 year payback.
- Horizontal unit vents functioning well but near end of life.
- HVAC Water pump bearing assembly failures becoming common with many replaced.
- Plumbing: Inadequate shut-off valves throughout building. Adding valves as repairs/modifications to the system are made.
- Power: Original underground 4160 V service, replaced in 2008 with 280/240v service.
- Casework: Science casework countertops in Physics lab at end of life, needs replacement or re-surfacing.
- Doors: (3) Machine shop and auto shop doors heavily rusted frames at end of life. and due for replacement
- Floors: Some terrazzo deterioration at entries, due for re-grinding
- Site: Some cracking in concrete walks. Concrete at west entry heaved, chipped.
- Some washout at roof drain outlets

<table>
<thead>
<tr>
<th>Priority Issues</th>
<th>0-5 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECI</td>
<td>1.2%</td>
</tr>
<tr>
<td>DMB</td>
<td>$182,622</td>
</tr>
<tr>
<td>DMB Excess</td>
<td>$0</td>
</tr>
</tbody>
</table>

$301,855

Annual cost to maintain current DMB

Alpena Community College 2015
Facility: University Center
Use Type(s): Administration, Classroom
Built: 1969
Area: 3,220 SF
Floors: 1 story

Observation Highlights:
- Durolast roof installed in 2008 (Built-up roof was at end of life, leaking and due for replacement)
- Extensive cracking in east block wall at garage
- Original single pane aluminum windows at end of life. Hopper windows with hardware in poor condition. Many units fastened shut.
- Heating controls poorly coordinated, temperature difficult to control
- Fire alarm original, not ADA compliant, not monitored.
- Exterior walks have settled at entry 3 +/-, trip hazard.

CBV

$592,480

Priority Issues

ECl

16.4%

DMB

$91,886

DMB Excess

$67,543

Over APPA 5% benchmark

Maintain DMB

$11,850

Annual cost to maintain current DMB

0-5 Year

ECl

23.0%

DMB

$128,584

DMB Excess

$106,350

Over APPA 5% benchmark

Alpena Community College 2015
Facility: Natural Resources Center

Use Type(s): Classroom, Lab

Built: 1972

Area: 39,518 SF

Floors: 4 stories

Observation Highlights:

- Settlement at first floor room 110, at building expansion joint. Floor and wall cracked and moved, appears to have stabilized. Engineer reports that no further movement anticipated.
- Hardware in poor condition. Window handle/ locking mechanism don’t operate well – plastic parts wearing out and replacement part availability limited.
- West entry curtain wall - caulk deteriorating, aluminum frames pitted, system at end of life, due for replacement
- (5) Chemistry and Biology fume hoods replaced as part of 2006 renovations. Fume hoods not on constantly – corrosives cabinet vents into system, but not on unless fume hood is on. Verify with safety regulator to determine system operation requirements.
- No shut-off valves for HVAC system make maintenance very difficult. Valves added when possible as repairs are made.
- Pumps had high failure rate on bearing assemblies, replaced with new type that has resolved the problem.
- Shut-off valves are inadequate and are added as repairs are made.
- Some distribution panels at or near capacity. No reported problems.
- Walls on level one and two repainted summer 2009.
- Spalling/ cracking of concrete waffle slab overhang and balcony floor at fourth floor boardroom, reinforcing exposed.
- Cracking on concrete cap on seatwall next to site ramp.

Priority Issues

- **1 YEAR**
 - Shut-off valves are inadequate and are added as repairs are made.
 - Some distribution panels at or near capacity. No reported problems.
- **5 YEAR**
 - Walls on level one and two repainted summer 2009.
 - Spalling/ cracking of concrete waffle slab overhang and balcony floor at fourth floor boardroom, reinforcing exposed.
 - Cracking on concrete cap on seatwall next to site ramp.

CBV

- **$9,642,880**

Priority Issues

- **0-5 Year**
 - **FCI** 23.4%
 - **DMB** $2,253,541
 - **DMB Excess** $1,771,397
 - Over APPA 5% benchmark
 - **Maintain DMB** $192,858
 - Annual cost to maintain current DMB
 - **DMB** $869,788
 - **DMB Excess** $387,644
 - Over APPA 5% benchmark

Alpena Community College 2015
Facility: Newport Center
Use Type(s): Athletic, Votech, Classroom, Library, Auditorium, Administration
Built: 1996
Area: 67,134 SF
Floors: 1 story

Observation Highlights:
- Settlement at classroom 111. Some initial settlement, no further movement since.
- Water infiltration at split faced, single wythe masonry walls
- Pressure bar attachment at transition from low roof to arena wall has no counter-flashing; just caulk bead along top edge. Caulk is cracked, potentially allowing water on wall or from cavity to run inside building at transition bar location.
- Extensive patching dating to original installation, particularly at seams. Patch adhesive showing signs of failure. Monitor condition and repair as necessary to prevent further deterioration.
- Glazing gasket on interior of windows popping out -- pushed back in place on a regular basis.
- AHU #6 at the arena is not working due to relay failure, AHU #5 is handling the load alone
- Fire suppression riser leaking at valve M168, likely packing failure
- Hollow metal service doors of auto body shops and arena rusting at bottom
- Carpet in wellness center entry shrinking and pulling at seams, potential trip hazard.

Priority Issues

<table>
<thead>
<tr>
<th>ECI</th>
<th>2.9%</th>
<th>DMB</th>
<th>$381,145</th>
<th>DMB EXCESS</th>
<th>$0</th>
</tr>
</thead>
</table>

Over APPA 5% benchmark

<table>
<thead>
<tr>
<th>ECI</th>
<th>7.9%</th>
<th>DMB</th>
<th>$1,022,458</th>
<th>DMB EXCESS</th>
<th>$372,040</th>
</tr>
</thead>
</table>

Over APPA 5% benchmark

Maintain DMB

<table>
<thead>
<tr>
<th>DMB</th>
<th>$260,168</th>
</tr>
</thead>
</table>

Annual cost to maintain current DMB
Facility: World Center for Concrete Technology

Use Type(s): Votech, Classroom, Lab

Built: 2000

Area: 44,220 SF

Floors: 1 story

Observation Highlights:

- Water infiltration at main lobby, especially at main window wall, flashing may be inadequate and weeps may not be working.
- HVAC: Bearing assembly failures on Bell & Gossett pumps
- AHU #2 (heat only) for labs 105 & 107, unit is cutting out on power overload; cause is unknown
- Power: Voltage fluctuates – usually over. Investigating supply problem with Alpena Power
- Past frequent breaker tripping problem solved by redistributing loads on panels for certain areas
- Doors: Roll-up doors – NE plant door gearbox leaks oil, SE plant door has minor forklift damage. Manual overhead door between 107 & 109 damaged by forklift and will not close
- Heaving problems at concrete pavers in front drives repaired in 2006
- Salt deterioration on bollard light fixtures at front, most lights replaced

$9,065,100

Priority Issues

<table>
<thead>
<tr>
<th>ECI</th>
<th>0-5 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6%</td>
<td>2.9%</td>
</tr>
</tbody>
</table>

$55,297

$225,721

$0

$0

$181,302

Annual cost to maintain current DMB

Over APPA 5% benchmark

Over APPA 5% benchmark

Alpena Community College 2015
Facility:

Fine Arts Center

Use Type(s):

Votech, Classroom

Built:

2007

Area:

14,090 SF

Floors:

1 story

Observation Highlights:

- Building new, under warranty
- Building HVAC creates negative pressure problems and concerns about proper distribution and ventilation throughout labs.
- Revolving darkroom door – not ADA accessible (only door).

Priority Issues

| 1 YEAR | 0.0% | $2,395,300 |
| 5 YEAR | 1.0% | $0 |

DMB

| 1 YEAR | $0 |
| 5 YEAR | $22,755 |

DMB EXCESS

| 1 YEAR | $0 |
| 5 YEAR | $0 |

Maintain DMB

$47,906

Over APPA 5% benchmark

Alpena Community College 2015
Facility: Huron Shores Building

Use Type(s): Classroom, Administration

Built: 1977

Area: 31,140 SF

Floors: 3 stories

Observation Highlights:
- Roof: Some roof leaks at edges of NE & NW corners. Downspout at boiler room door loose, pulling off building.
- Windows: Original insulated glazed, sliding aluminum windows in good condition. Hardware in good condition, locks work well.
- Cladding: Evidence of brick damage and replacement at new stair/elevator tower in SW corner. Brick still appears to be problematic in these areas.
- HVAC: Most components are original, near or past end of life. Above-ceiling AHU's are very noisy; several only operate when lights are on - very poor air quality. (2) intake louvers at lower level are covered, should be uncovered for better indoor air quality.
- Excessive humidity problems evident from sagging ceiling tile.
- Server closet on second floor overheats.
- Drinking fountains don’t have adequate water flow.
- Power: Panels are not labeled well. No GFI outlets in science lab.
- Lighting: Stairway lighting on switches, lighting level low.
- Ceilings: Sagging tiles on all floors, especially the 1st floor. Grid is stained and rusty, due for re-paint. Grid damaged in computer lab. 5+% of ceiling tile is stained or damaged by water.
- Doors: Closer at main entry needs repair. Original hardware at end of life, due for replacement. North door sticks & doesn’t close tight. West lower level hollow metal door rusting at bottom, delaminating, doesn’t close, due for replacement.
- Interior doors: Finish scratched and veneer damage, most doors have holes where parts were removed.
- Carpet replaced throughout first and second floor with the exception of a few offices.
- Emergency and Exit lighting - Several not working.
- Treads in poor condition on some stairs, especially front entry stair.
- Front entry steps nosings missing or loose.
Deferred Maintenance Detail Report - by Building
Alpena Community College

Notes:
Data for past assessments is included for reference purposes.
2008 assessment notes indicate if past issues have been addressed.

*** indicates a priority issue
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System %</th>
<th>CRV of System $</th>
<th>Pct. of System Value to Budget for Repair/Replacement: Immediate 1-5 Years 6-10 Years 11+ Years</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>21</td>
<td>$1,440,533</td>
<td>0 5 25</td>
<td>Load bearing masonry Utility tunnels on entire perimeter. Slab on grade 2000 assessment: Concrete block construction. Crack in main hall floor needs to be repaired. Joints not closed. 2008 assessment: No reported changes.</td>
</tr>
<tr>
<td>Roof</td>
<td>4</td>
<td>$274,387</td>
<td>0 0 0</td>
<td>Durolast PVC roof installed over existing roof on entire facility BUR on boiler room and small office addition, original EPDM on balance of roof 2000 assessment: Some roof leaks 2008 assessment: Durolast PVC roof installed over EPDM roof and insulation (2008). Insulation replaced where wet. Approx. $90,000</td>
</tr>
<tr>
<td>Glazing</td>
<td>3</td>
<td>$205,790</td>
<td>10 0 10</td>
<td>All aluminum windows replaced approximately 1990, insulated glass Hopper windows with hardware in good condition. 2008 assessment: No reported problems.</td>
</tr>
</tbody>
</table>
Campus: Main
Bldg. No: 01
Building: Van Lare Hall
Area: 36,880sf
Yr Built: 1957
Floors: 1

Use Types:
40% Administration
60% Classroom

Notes: Addition at east end 1962

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>%</th>
<th>$</th>
<th>Immediate</th>
<th>1-5 Years</th>
<th>6-10 Years</th>
<th>11+ Years</th>
<th>System/Component Notes</th>
</tr>
</thead>
</table>
| HVAC | 18 | $1,234,742 | 95 | 5 | 0 | 0 | 0 | Generation
(2) Steam boilers replaced in 1993,
Distribution
(2) Small RTU AC units with condensers serve computer labs and office.
(1) Large ceiling mounted fan coil unit serve student commons.
(4) Small ceiling mounted fan coil units serve offices
Unit ventilators with thru wall fresh air intakes are typical in classrooms
Controls
Pneumatic controls
2000 assessment:
2 steam boilers, 8 years old. Roof top air units new at labs – not controllable.
Univents throughout building – original, but adequate. 12 window air conditioning units in offices.
Poor ventilation. Poor air circulation in offices
2008 assessment:
***Surging of water levels in boilers periodically causes shut down due to low water. High-low pressure staging of boilers
***Distribution system (unit ventilators, piping, etc.) mostly original, at end of useful life.
***Pneumatic controls – some problems with moisture in the lines
Exhaust fans in toilet rooms are noisy
***Poor ventilation. Poor air circulation in offices. Indoor air quality throughout should be investigated (building ventilation originally anticipated through unit ventilators and operable windows - does not likely meet current standards, especially where walls relocated).
Use Types:
- 40% Administration
- 60% Classroom

Notes:
- Addition at east end 1962

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>$</td>
</tr>
<tr>
<td>Plumbing</td>
<td>8</td>
<td>$548,774</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary/Secondary</td>
<td>5</td>
<td>$342,984</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>4</td>
<td>$274,387</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting</td>
<td>4</td>
<td>$274,387</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>CRV of System</td>
<td>Pct. of system value to budget for repair/replacement:</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>Immediate</td>
</tr>
<tr>
<td>Voice/Data</td>
<td>2</td>
<td>$137,194</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceilings</td>
<td>3</td>
<td>$205,790</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walls</td>
<td>8</td>
<td>$548,774</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>CRV of System %</td>
<td>$</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Doors</td>
<td>4</td>
<td>$274,387</td>
</tr>
<tr>
<td>Floors</td>
<td>3</td>
<td>$205,790</td>
</tr>
</tbody>
</table>
Campus: Main
Bldg. No: 01
Building: Van Lare Hall
Area: 36,880sf
Yr Built: 1957
Floors: 1

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
</table>
| Code (fire, ADA, etc.) | 4 | $274,387 | 0 | 0 | 10 | 90 | (1) ADA compliant toilet room.
Exit lighting and emergency lighting on battery backup. No reported problems.
No fire protection sprinkling in entire building.
2000 assessment:
Original fire system, in need of replacement
2008 assessment:
Fire alarm upgraded to ADA compliant in 2002, not monitored. No reported problems. |
| Immed. Site, Ext. Ltg., etc | 3 | $205,790 | 0 | 0 | 10 | 90 | Walks and parking lots in good condition
Wall and pole mounted lighting functioning
2000 assessment:
Some site backfilling towards back of building, near river. Parking lot in fair condition, needs some landscaping. Lighting improvements needed in west parking lot.
2008 assessment:
No reported problems. |

CRV Totals:
$6,859,680$1,433,673 $353,274 $878,039 $4,194,694

Priority Issues Data

<table>
<thead>
<tr>
<th>CRV</th>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6,859,680</td>
<td>$1,433,673</td>
<td>$1,090,689</td>
<td>20.9%</td>
<td>POOR</td>
</tr>
</tbody>
</table>

0-5 Year Cumulative Data

<table>
<thead>
<tr>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>$/YR MAINTAIN</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System/Component Notes

Structure

- CRV of System: 23
- System/Component Notes: Load bearing masonry. Concrete plank roof system. Slab on grade. Tunnels under corridors for mechanical piping and wiring.

Roof

- CRV of System: 3
- System/Component Notes: 60% BUR, some leaks typically at drains, not significant. 30% Durolast – installed 1996 - laid over old 1-1/2" fiber board insulation some of which was saturated and is crushed resulting in extensive ponding. 10% EPDM replaced with Computer lab renovation. Extensive skylights (dome type) in computer and auto labs area – no leaks reported.

Glazing

- CRV of System: 3
- System/Component Notes: Original aluminum frame with single pane glass with the exception of new fixed windows at recently renovated computer labs. Most old windows are operable units – some hopper and casement. Skylights in corridor- original acrylic dome, no reported problems.

Notes: Addition 1967

2nd floor extended in to former concrete lab to provide new classrooms
Use Types:
- 5% Kitchen/Food Service
- 40% VoTech
- 55% Classroom

Notes: Addition 1967
2nd floor extended into former concrete lab to provide new classrooms

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System %</th>
<th>$</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
</table>
| Cladding | 5 | $754,638 | 0 | 5 | 10 | 85 | Concrete block – mixture of types and sizes
Metal fascia panels
Minimal metal siding on penthouse at lab area only
2008 assessment:
***Sealant at exterior control joints at end of life, due for replacement
Metal fascia panels re-painted in 1998
Minimal mortar problems
No reported problems with water infiltration
No reported problems with weep holes or spalling/cracking
Concrete deck soffit at overhang on SW corner moved, deck uneven,
Concrete soffit due for re-paint |
Campus: Main
Building: Besser Technology Center
Area: 82,700sf
Yr Built: 1962
Floors: 2

Use Types:
- 5% Kitchen/Food Service
- 40% VoTech
- 55% Classroom

Notes:
- Addition 1967
 - 2nd floor extended in to former concrete lab to provide new classrooms

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>$</td>
<td>Immediate</td>
</tr>
<tr>
<td>HVAC</td>
<td>19</td>
<td>$2,867,623</td>
<td>0</td>
</tr>
</tbody>
</table>
| Generation | | | Generation | (2) 1962 hot water boilers – low efficiency (60%), gas fired, ground mounted, cycled for complete redundancy. Boilers provide hot water for reheat coils at BTC and CTR. Cooling provided by (4) DX rooftop AHU's for computer/CAD labs (2007), bookstore (1998) and presidents office area (1998). Some window AC units elsewhere for individual rooms. Water service is treated. Distribution Horizontal unit vents in classrooms, corridors and some offices. (7) new vertical units with rooftop compressors provided in 2007 computer lab renovation Auto lab: Co-Ray-Vac radiant heating (1993). Welding lab: Gas fired RTU connected to exhaust fan system Machine shop: 3-zone AHU, original Controls Primarily pneumatic controls on original equipment. Air compressor motor replaced previously. DDC controls on new roof top equipment. Welding lab fume venting system works well (1988+/-) Auto lab exhaust system works well (1998+/-) Toilet exhaust system tied to lighting. 2000 assessment: No air conditioning. Original hot water/boiler - OK Need more outside ventilation. Primarily univents, some air handlers. Piping problem in boiler room should be addressed within the year. $20,000-$25,000 to fix. Transformer in boiler room - leak sprayed into transformer - situation not considered safe. 2008 assessment: ***(2) plugged tubes on boiler #1, (1) failed fire tube – repairs on hold. No way to determine condition of boilers besides the tubes. ***Horizontal unit vents in classrooms functioning well but near end of life. ***Pump bearing assembly failures becoming common with many replaced. Considering replacement with (3) high efficiency, pulse type boilers at a cost of $103,000 for units and $36,000 to remove existing and install new. Savings of
Campus: Main
Bldg. No: 02
Building: Besser Technology Center
Area: 82,700sf
Yr Built: 1962
Floors: 2

Use Types:
- 5% Kitchen/Food Service
- 40% VoTech
- 55% Classroom

Notes: Addition 1967
- 2nd floor extended in to former concrete lab to provide new classrooms

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Immediate</td>
<td>1-5 Years</td>
</tr>
<tr>
<td>Plumbing</td>
<td>6</td>
<td>$905,565</td>
<td>0</td>
</tr>
<tr>
<td>Primary/Secondary</td>
<td>6</td>
<td>$905,565</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$30,000/year with improved efficiency gives a 4-1/2 year payback. Cooling DX rooftop AHU’s - no reported problems. No coil leaks reported. Auto lab: Co-Ray-Vac radiant heating functioning well. Pneumatic controls in good working condition Welding lab fume venting system works well. Auto lab exhaust system works well.
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>7</td>
<td>0 0 5</td>
<td>Some distribution panels at capacity.</td>
</tr>
<tr>
<td></td>
<td>$1,056,493</td>
<td></td>
<td>2008 assessment: New panels were added in 2007 with computer lab renovations. No reported problems.</td>
</tr>
<tr>
<td>Lighting</td>
<td>5</td>
<td>0 5 10</td>
<td>2x4 fluorescent T12 fixtures typical. No reported problems. When ballasts fail fixtures are switched over to T8 lamps. Some compact fluorescent in downlights. HID fixtures in shops. No reported problems.</td>
</tr>
<tr>
<td></td>
<td>$754,638</td>
<td></td>
<td>2008 assessment: No reported problems</td>
</tr>
<tr>
<td>Voice/Data</td>
<td>4</td>
<td>0 0 5</td>
<td>Data: Fiber run between buildings. Cabling 100% category 5e. No reported problems.</td>
</tr>
<tr>
<td></td>
<td>$603,710</td>
<td></td>
<td>2008 assessment: Voice: Phone system near end of life, obsolete Central Clock: Newer head end. No reported problems.</td>
</tr>
<tr>
<td>Ceilings</td>
<td>2</td>
<td>0 5 15</td>
<td>Painted concrete plank exposed ceiling in most spaces. 2x4 lay-in installed in approximately 20% of spaces. Plan to continue adding lay-in ceilings. Open to metal deck in shop areas. No reported problems.</td>
</tr>
<tr>
<td></td>
<td>$301,855</td>
<td></td>
<td>2008 assessment: No reported problems</td>
</tr>
<tr>
<td>Walls</td>
<td>6</td>
<td>0 10 5</td>
<td>Painted CMU in good condition. Re-paint as needed President's office area has wood wainscot</td>
</tr>
<tr>
<td></td>
<td>$905,565</td>
<td></td>
<td>2008 assessment: ***Science casework countertops in Physics lab at end of life, needs replacement or re-surfacing.</td>
</tr>
</tbody>
</table>

Campus: Main
Bldg. No: 02
Building: Besser Technology Center
Area: 82,700sf Yr Built: 1962 Floors: 2

Use Types: 5% Kitchen/Food Service 40% VoTech 55% Classroom

Notes: Addition 1967 2nd floor extended in to former concrete lab to provide new classrooms.
Campus: Main
Bldg. No: 02
Building: Besser Technology Center
Area: 82,700sf Yr Built: 1962 Floors: 2

Use Types:
- 5% Kitchen/Food Service
- 40% VoTech
- 55% Classroom

Notes: Addition 1967
2nd floor extended into former concrete lab to provide new classrooms

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>$</td>
<td>Immediate</td>
</tr>
<tr>
<td>Doors</td>
<td>3</td>
<td>$452,783</td>
<td>5</td>
</tr>
<tr>
<td>Floors</td>
<td>3</td>
<td>$452,783</td>
<td>0</td>
</tr>
<tr>
<td>Code (fire, ADA, etc.)</td>
<td>2</td>
<td>$301,855</td>
<td>0</td>
</tr>
</tbody>
</table>
Addition 1967
2nd floor extended into former concrete lab to provide new classrooms

<table>
<thead>
<tr>
<th>Use Types</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% Kitchen/Food Service</td>
<td>2nd floor extended in to former concrete lab to provide new classrooms</td>
</tr>
<tr>
<td>40% VoTech</td>
<td></td>
</tr>
<tr>
<td>55% Classroom</td>
<td></td>
</tr>
</tbody>
</table>

System: Main
Bldg. No: 02
Building: Besser Technology Center
Area: 82,700sf Yr Built: 1962 Floors: 2

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
<td></td>
</tr>
<tr>
<td>Immed. Site, Ext. Ltg., etc</td>
<td>3</td>
<td>5 5 5</td>
<td>85 Concrete walks.</td>
</tr>
<tr>
<td></td>
<td>$452,783</td>
<td></td>
<td>Pole mounted and building mounted lighting.</td>
</tr>
</tbody>
</table>

2000 assessment:
Curb in front of building – expansion joint chipping. Parking lot needs surface treatment, seal. Some paving removed for planting, leaving mud pits. Exterior lighting not adequate

2008 assessment:
***Some cracking in concrete walks. Concrete at west entry heaved, chipped
***Some washout at roof drain outlets adjacent to building. Water should be redirected further away to prevent future problems.
Irrigation system added for lawn restoration lost due to grubs

CRV Totals:
$15,092,750 $182,622 $1,539,461 $1,569,646 $11,801,021

Priority Issues Data

<table>
<thead>
<tr>
<th>CRV</th>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>$15,092,750</td>
<td>$182,622</td>
<td>$0</td>
<td>1.2%</td>
<td>GOOD</td>
</tr>
</tbody>
</table>

0-5 Year Cumulative Data

<table>
<thead>
<tr>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>$/YR MAINTAIN</th>
<th>RATING</th>
</tr>
</thead>
</table>

SHWGROUP Printed 10/1/2014 Alpena Community College
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>%</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CRV of System</td>
<td>%</td>
<td>Pct. of system value to budget for repair/replacement:</td>
<td>System/Component Notes</td>
</tr>
<tr>
<td>Structure</td>
<td>14</td>
<td>$82,947</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Roof</td>
<td>5</td>
<td>$29,624</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Glazing</td>
<td>3</td>
<td>$17,774</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>Cladding</td>
<td>9</td>
<td>$53,323</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>
System | **CRV of System** | **%** | **$** | **Pct. of system value to budget for repair/replacement:** | **System/Component Notes**
---|---|---|---|---|---
HVAC | 21 | $124,421 | 60 | 10 | 10 | 20 Generation
Hot water Lochinvar boiler.
Distribution
Unit ventilators and perimeter fin tube
(5) window mounted AC units.
Controls
Electric thermostats
2000 assessment:
Hot water boiler, 10 years old, unreliable – needs to be replaced. Some window air units installed recently. HVAC units in space are not operable, cannot be controlled. Very poor ventilation
2008 assessment:
***Controls poorly coordinated, temperature difficult to control
***Unit ventilators and fin tube older, near end of life.
Boiler in good condition.
No reported problems with window A/C units

Plumbing | 5 | $29,624 | 0 | 0 | 5 | 95 2000 assessment:
Plumbing adequate, but not ADA compliant
2008 assessment:
No changes reported.

Primary/Secondary | 6 | $35,549 | 0 | 0 | 5 | 95 No reported problems.

Distribution | 5 | $29,624 | 0 | 0 | 5 | 95 No reported problems.

Lighting | 4 | $23,699 | 0 | 10 | 10 | 80 Original ceiling mounted fluorescent fixtures T12. Nearing end of expected life, but no reported problems.

Voice/Data | 4 | $23,699 | 0 | 0 | 0 | 100 No reported problems.

Ceilings | 3 | $17,774 | 0 | 0 | 0 | 100 Exposed construction

Walls | 6 | $35,549 | 0 | 0 | 5 | 95 Painted CMU in good condition.
Campus: Main
Bldg. No: 03
Building: University Center
Area: 3,220sf
Yr Built: 1969
Floors: 1

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Immediate</td>
<td>1-5 Years</td>
</tr>
<tr>
<td>Doors</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floors</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Code (fire, ADA, etc.)</td>
<td>3</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immed. Site, Ext. Ltg., etc</td>
<td>4</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
University Center

<table>
<thead>
<tr>
<th>Campus: Main</th>
<th>Building: University Center</th>
<th>Use Types:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>40 % Classroom</td>
</tr>
<tr>
<td>Bldg. No: 03</td>
<td></td>
<td>60 % Administration</td>
</tr>
<tr>
<td>Area: 3,220sf</td>
<td></td>
<td>1969</td>
</tr>
<tr>
<td>Yr Built: 1969</td>
<td></td>
<td>Floors: 1</td>
</tr>
</tbody>
</table>

System/Component Notes

<table>
<thead>
<tr>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Immediate</td>
</tr>
</tbody>
</table>

CRV Totals:

- $592,480
- $97,167
- $38,807
- $44,140
- $412,366

Priority Issues Data

<table>
<thead>
<tr>
<th>CRV</th>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>$592,480</td>
<td>$97,167</td>
<td>$67,543</td>
<td>16.4%</td>
<td>POOR</td>
</tr>
</tbody>
</table>

0-5 Year Cumulative Data

<table>
<thead>
<tr>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>$/YR MAINTAIN</th>
<th>RATING</th>
</tr>
</thead>
</table>

Alpena Community College

Printed 10/1/2014
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Immediate 1-5 Years</td>
<td>6-10 Years</td>
</tr>
</tbody>
</table>
| Structure | 16 | $1,542,861 | 1 | 5 | 5 | 89 | Concrete structure with waffle slab floors. 5'-6" crawl space for piping and ductwork.
2000 assessment: Some settlement cracks in first floor hallway
2008 assessment:
***Excessive spalling/ cracking of concrete waffle slab overhang and balcony floor at fourth floor boardroom, reinforcing exposed. Structural inspection and repair recommended.
***Steel angle supporting block railing on balcony very rusty – due for inspection/ clean/ re-paint
Settlement at first floor room 110, at building expansion joint. Floor and wall cracked and moved, appears to have stabilized. Engineer report indicates that no further movement anticipated.
No reported problems with heaving at doors.
No reported problems with water infiltration |
| Roof | 3 | $289,286 | 0 | 30 | 5 | 65 | Durolast roofing installed in 2000 to resolve roof problems.
2008 assessment: Previous leaks at penthouse were patched. Minimal ponding, No reported problems. |
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
<td></td>
</tr>
</tbody>
</table>
Campus: Main
Bldg. No: 04
Building: Natural Resource Center
Area: 39,520sf
Yr Built: 1972
Floors: 4
Use Types:
- 40% Classroom
- 60% Lab

Notes: 1996 - 1/3 remodeled

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
<td></td>
</tr>
</tbody>
</table>
| HVAC | 24 | 35 25 5 35 | Generation
Original Bryan flex tube, atmospheric boiler on 3rd floor. AHU with DX cooling in boiler room with condenser on roof serves board room. Installed in 1994
Distribution
Fin tube heat at exterior walls typical
Constant volume system with (2) AHU's. AHU in basement serves room 101. AHU on 3rd floor serves the rest of the building. Reheat coils at each room.
No shut-off valves for HVAC system make maintenance very difficult. Valves added when possible as repairs are made.
Greenhouse radiant heating system
Controls
Hybrid system of pneumatic controls tied to campus EMS
(5) Chemistry and Biology fume hoods replaced as part of 2006 renovations. Twist timers provided for full room exhaust in labs. General room return air connected to building return system
2000 assessment:
No air conditioning. Original hot water boiler. Equipment well maintained. Original fume hoods - have been inspected
2008 assessment:
(5) Chemistry and Biology fume hoods replaced as part of 2006 renovations.
***Fume hoods not on constantly to vent cabinets used from storage. Corrosives cabinet vents into system, but not on unless fume hood is on. Verify with safety regulator to determine system operation requirements.
***Twist timers provided for full room exhaust in labs. General room return air connected to building return system (current code requires full air exchange without return)
Original Bryan flex tube boiler functions very well. No reported problems. No shut-off valves for HVAC system make maintenance very difficult. Valves added when possible as repairs are made. Pumps had high failure rate on bearing assemblies, replaced with new type that has resolved the problem.
Greenhouse radiant heating system - No reported problems. Added filter bank and UV light sterilizer to improve indoor air quality in 2004. No reported problems. |
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>$</td>
<td>Immediate</td>
</tr>
<tr>
<td>Plumbing</td>
<td>7</td>
<td>$675,002</td>
<td>0</td>
</tr>
<tr>
<td>Primary/Secondary</td>
<td>5</td>
<td>$482,144</td>
<td>0</td>
</tr>
<tr>
<td>Distribution</td>
<td>3</td>
<td>$289,286</td>
<td>0</td>
</tr>
<tr>
<td>System</td>
<td>CRV of System</td>
<td>Pct. of system value to budget for repair/replacement</td>
<td>System/Component Notes</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>% $</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
<td></td>
</tr>
</tbody>
</table>
| Lighting | 5 $482,144 | 0 5 10 | Surface mounted fluorescent T12 fixtures typical in corridors. No reported problems. Pendant mounted fluorescent in classrooms. Converted to T8 as ballasts are replaced. (1) classroom converted to 2x4 deep cell parabolic fixtures in suspended grid.
<p>| Voice/Data | 3 $289,286 | 0 5 10 | Data: Fiber run between buildings. Cabling 100% category 5e. No reported problems. Building updated with wireless. 2008 assessment: Voice: Phone system near end of life, obsolete Central Clock: No system. |
| Ceilings | 3 $289,286 | 2 5 10 | First floor labs typically open exposed construction Second and third floor suspended 2x4 lay-in. Gypsum board in corridors 2000 assessment: Lay-in ceiling, reverse box & pan, needs repainting. Some staining due to roof leaks 2008 assessment: ***Some ceiling damage on second floor under boiler room due to leaking pumps |</p>
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement</th>
<th>System/Component Notes</th>
</tr>
</thead>
</table>
| Walls | 8 $771,430 | Immediate 1-5 Years 6-10 Years 11+ Years | Painted CMU - color outdated.
2008 assessment:
Walls on level one chipped and scuffed - due for re-paint
Combination of original and new oak and maple casework in labs renovated.
Lab tops in Chemistry and Biology replaced. |
| Doors | 3 $289,286 | Immediate 1-5 Years 6-10 Years 11+ Years | Exterior:
Original full-lite aluminum frame typical at entries. Original hardware in good condition
Hollow metal doors in good condition. No reported problems.
Aluminum framed, full-lite doors at boardroom in good condition, No reported problems.
2000 assessment:
Doors in good condition but need ADA compliant hardware in most areas
Interior:
Original solid core wood. Many replaced with 2006 renovations to provide fire rating. No reported problems.
All hardware has been upgraded to ADA compliant lever handles.
2008 assessment:
No reported problems. |
| Floors | 4 $385,715 | Immediate 1-5 Years 6-10 Years 11+ Years | Ceramic tile in toilet rooms. 2nd floor replaced in 2006, 3rd floor needs replacement.
Carpet – offices and boardroom.
VCT in classrooms, corridors and labs.
Quarry tile at entry
2008 assessment:
Rooms 210 and 214 carpet to be replaced in 2008.
Carpet in rooms 202 & 204 stained and near end of life.
VCT replaced in renovated labs (2006) |
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
<td></td>
</tr>
<tr>
<td>Code (fire, ADA, etc.)</td>
<td>4</td>
<td>385,715</td>
<td>0 0 5 95 ADA compliant toilet room upgrade on first floor. No fire protection sprinkling in entire building. Traction elevator – original upgraded for ADA.</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>Immediate 2008 assessment: Exit lighting and emergency lighting updated in 2005. No reported problems. Fire alarm upgraded to ADA compliant on central monitored system. No reported problems. Fire doors blocked open in several locations throughout</td>
<td></td>
</tr>
<tr>
<td>Immed. Site, Ext. Ltg., etc</td>
<td>3</td>
<td>289,286</td>
<td>0 5 10 85 No reported problems. 2000 assessment: Cracking on concrete cap on seatwall next to site ramp. New parking lot this year. More site lighting required 2008 assessment: No reported problems.</td>
</tr>
</tbody>
</table>

CRV Totals: $9,642,880 $869,788 $1,383,753 $800,359 $6,588,980

Priority Issues Data

<table>
<thead>
<tr>
<th>CRV</th>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>RATING</th>
<th>0-5 Year Cumulative Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9,642,880</td>
<td>$869,788</td>
<td>$387,644</td>
<td>9.0%</td>
<td>FAIR</td>
<td>DMB</td>
</tr>
</tbody>
</table>

SHWGROUP Printed 10/1/2014 Alpena Community College
Campus: Main
Bldg. No: 06
Building: Newport Center Bldg./Annex
Area: 67,140sf
Yr Built: 1996
Floors: 1

Use Types:
- 5% Kitchen/Food Service
- 10% Auditorium
- 20% VoTech
- 20% Library
- 20% Classroom
- 25% Athletic

Notes: Connected to Besser Tech Annex in 1996.

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>$</td>
<td>Immediate</td>
</tr>
</tbody>
</table>
| Structure | 20 | $2,601,675 | 1 | 5 | 5 | 89 | Load bearing masonry.
 | | | | | | | Slab on grade.
 | | | | | | | 2000 assessment:
 | | | | | | | Water leaking into concrete block, through wall, onto steel.
 | | | | | | | 2008 assessment:
 | | | | | | | Settlement at classroom 111. Some initial settlement, no further movement since.
 | | | | | | | ***Water infiltration at split faced, single wythe masonry walls. Primary source not known. |
| Roof | 6 | $780,503 | 35 | 35 | 30 | 0 | EPDM (fully adhered) installed in 1996
 | | | | | | | 2008 assessment:
 | | | | | | | ***Pressure bar attachment at transition from low roof to arena wall has no counter-flashing; just caulk bead along top edge. Caulk is cracked, potentially allowing water on wall or from cavity to run inside building at transition bar location.
 | | | | | | | ***Extensive patching dating to original installation, particularly at seams. Patch adhesive showing signs of failure. Monitor condition and repair as necessary to prevent further deterioration.
 | | | | | | | ***Active leak at roof to wall transition between rooms 101/103 & 105/103 and in arena. |
| Glazing | 2 | $260,168 | 5 | 5 | 10 | 80 | All aluminum frame with insulated, fixed glass
 | | | | | | | No reported problems with fogging.
 | | | | | | | 2008 assessment:
 | | | | | | | ***Glazing in corridor near room 113 leaking at head of window.
 | | | | | | | ***Glazing gasket on interior of windows popping out – requires being pushed back in place on a regular basis. |
System Components

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System %</th>
<th>$</th>
<th>Pct. of system value to budget for repair/replacement: Immediate</th>
<th>1-5 Years</th>
<th>6-10 Years</th>
<th>11+ Years</th>
<th>System/Component Notes</th>
</tr>
</thead>
</table>
| Cladding | 10 | $1,300,838 | 2 | 3 | 5 | 90 | Concrete block – split faced, single wythe
No reported problems. with spalling/cracking
2000 assessment:
Core-filled block cladding. Sealed all along library, north wall, Wellness Center & gym, south side approach of parking. Will need resealing in 7-10 years.
2008 assessment:
***Problems with water infiltration at upper wall of arena and corridor near classroom 111. Cause undetermined, but may be due to lack of through-wall flashing, block sealer, or lack of counter flashing where roof membrane meets wall.
***Ongoing water leak from wall above in room 105
Open joint weep holes filled with sealant and tubes installed at base flashing and window heads in 2002 |
| HVAC | 18 | $2,341,508 | 1 | 2 | 5 | 92 | Generation
BTC boilers provide hot water for reheat coils.
(2) Ground mounted Trane DX chiller with compressor provides for cooling
Distribution
Combination of Trane roof top and indoor AHU’s provide for all spaces as follows:
RTU #1 – arena and theater; RTU #7 – library; AHU #3 – wellness center;
AHU #4 – Kitchentte; AHU #5&6 – Arena; AHU #9 – Utility Technology
Auto Body: Co-Ray-Vac radiant heating functioning well
The library and rooms 104, 106, 108, 112, 114 & 116 have air conditioning.
VAV system with reheat coils throughout building
Ceiling mounted CUH in entry vestibules
Controls
Pneumatic controls in good working condition with no reported problems.
Auto lab paint booth ventilation system works well. No reported problems.
2008 assessment:
***AHU #6 at the arena is not working due to relay failure, AHU #5 is handling the load alone |
System: Plumbing
- CRV of System: $650,419
- Pct. of system value to budget for repair/replacement:
 - Immediate: 1
 - 1-5 Years: 0
 - 6-10 Years: 5
 - 11+ Years: 94
- System/Component Notes:
 - Main – cast iron service, original. No reported problems. Water service has high iron content.
 - Distribution - copper. No reported problems.
 - Shut-off valves are in good condition and adequate quantity.
 - Waste – cast iron.
 - Plumbing fixtures are original and in good condition
 - Flush valves are original and in good condition. No reported problems.
 - Toilet partitions: original metal, in good condition.

System: Primary/Secondary
- CRV of System: $650,419
- Pct. of system value to budget for repair/replacement:
 - Immediate: 0
 - 1-5 Years: 0
 - 6-10 Years: 5
 - 11+ Years: 95
- System/Component Notes:
 - 277 V transformer for lighting and 120V receptacles. Transformer not owned by college
 - Power quality is good

System: Distribution
- CRV of System: $650,419
- Pct. of system value to budget for repair/replacement:
 - Immediate: 0
 - 1-5 Years: 0
 - 6-10 Years: 5
 - 11+ Years: 95
- System/Component Notes:
 - Some capacity at distribution panels.

System: Lighting
- CRV of System: $650,419
- Pct. of system value to budget for repair/replacement:
 - Immediate: 0
 - 1-5 Years: 5
 - 6-10 Years: 15
 - 11+ Years: 80
- System/Component Notes:
 - 2x4 fluorescent T12 fixtures typical. No reported problems. Original magnetic ballasts; no ballasts replaced to-date.
 - Some compact fluorescent in downlights in conference rooms. No reported problems.
 - HID fixtures in arena. No reported problems.

Notes:
- Connected to Besser Tech Annex in 1996.
Use Types:
- 5% Kitchen/Food Service
- 10% Auditorium
- 20% VoTech
- 20% Library
- 20% Classroom
- 25% Athletic

Notes:
- Connected to Besser Tech Annex in 1996.

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>$</td>
<td>Immediate</td>
</tr>
</tbody>
</table>
| Voice/Data | 4 | $520,335 | 0 | 0 | 0 | 5 | 95 Data: Fiber run between buildings.
 | | | | | | | Cabling 100% category 5e. No reported problems.
 | | | | | | | 2008 assessment:
 | | | | | | | Voice: Phone system near end of life, obsolete
 | | | | | | | Central Clock:
 | | | | | | | Newer head end. No reported problems. |
| Ceilings | 3 | $390,251 | 1 | 5 | 5 | 89 | 2x4 and 2x2 lay-in installed in most spaces.
 | | | | | | | Open to metal deck in arena, utility tech, and auto lab.
 | | | | | | | Some gypsum board drops in theater. No reported problems.
 | | | | | | | 2008 assessment:
 | | | | | | | ***Water damaged ceiling tiles in 104/106 (5%) – potentially from roof leak
| Walls | 6 | $780,503 | 0 | 2 | 5 | 93 | Ground faced CMU in good condition. No reported problems.
 | | | | | | | Vinyl wall covering in limited areas.
 | | | | | | | 2008 assessment:
 | | | | | | | Some cart damage on wall covering in room 104 service corridor
| Doors | 3 | $390,251 | 1 | 5 | 5 | 89 | Exterior: Original full-lite aluminum frame typical at entries. Hardware in good condition
 | | | | | | | Hollow metal at service doors of auto body shops and arena.
 | | | | | | | (3) OH doors at auto shop, motorized.
 | | | | | | | 2000 assessment:
 | | | | | | | Rusting center mullion at entrance side door.
 | | | | | | | Interior: Original solid core wood. No reported problems.
 | | | | | | | Hollow metal doors at auto body. No reported problems.
 | | | | | | | All hardware has been upgraded to ADA compliant lever handles.
 | | | | | | | 2008 assessment:
 | | | | | | | Hollow metal at service doors of auto body shops and arena - rusting at bottom
 | | | | | | | Exit door from corridor to exterior (near 124) sticking – hinges loose

Campus: Main
Bldg. No: 06
Building: Newport Center Bldg./Annex
Area: 67,140sf
Yr Built: 1996
Floors: 1
Use Types:
- 5% Kitchen/Food Service
- 10% Auditorium
- 20% VoTech
- 20% Library
- 20% Classroom
- 25% Athletic

Campus: Main
Bldg. No: 06
Building: Newport Center Bldg./Annex
Area: 67,140sf Yr Built: 1996 Floors: 1

Notes:
Connected to Besser Tech Annex in 1996.

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System %</th>
<th>CRV of System $</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
</table>
| Floors | 4 | $520,335 | Immediate 1-5 Years 6-10 Years 11+ Years | 79 Ceramic tile in toilet rooms
Fire alarm original, ADA compliant. No reported problems.
All lighting including exit lighting and emergency lighting on emergency generator. No reported problems.
Fire protection sprinkling in entire building.
2008 assessment:
***Walk-off mat by library entry loose, trip hazard
***Carpet in wellness center entry shrinking and pulling at seams, potential tripping hazard.
| Code (fire, ADA, etc.) | 2 | $260,168 | 0 0 5 | 95 ADA compliant throughout. Toilet rooms, door operators, door hardware, etc.
Fire alarm original, ADA compliant. No reported problems.
All lighting including exit lighting and emergency lighting on emergency generator. No reported problems.
Fire protection sprinkling in entire building.
2000 assessment:
No rail on stair at loading dock.
Security system in some areas
2008 assessment:
No reported changes. |
| Immed. Site, Ext. Ltg., etc. | 3 | $390,251 | 0 0 5 | 95 No cracking in concrete walks. No reported problems.
Building mounted lighting. No reported problems.
2000 assessment:
Grass recently replaced
2008 assessment:
Irrigation system added for lawn restoration lost due to grubs |
Use Types:

- Kitchen/Food Service: 5%
- Auditorium: 10%
- VoTech: 20%
- Library: 20%
- Classroom: 20%
- Athletic: 25%

Notes:

Connected to Besser Tech Annex in 1996.

System Information

Campus: Main
Bldg. No: 06
Building: Newport Center Bldg./Annex
Area: 67,140sf
Yr Built: 1996
Floors: 1

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>CRV %</th>
<th>$</th>
<th>Pct. of system value to budget for repair/ replacement:</th>
<th>Immediate</th>
<th>1-5 Years</th>
<th>6-10 Years</th>
<th>11+ Years</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CRV Totals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$13,008,375</td>
<td>$381,145</td>
<td>$641,313</td>
<td>$956,116</td>
<td>$11,159,885</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Priority Issues Data

<table>
<thead>
<tr>
<th>CRV</th>
<th>$13,008,375</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMB</td>
<td>$381,145</td>
</tr>
<tr>
<td>EXCESS</td>
<td>$0</td>
</tr>
<tr>
<td>FCI</td>
<td>GOOD</td>
</tr>
</tbody>
</table>

0-5 Year Cumulative Data

<table>
<thead>
<tr>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>$/YR MAINTAIN</th>
<th>RATING</th>
</tr>
</thead>
</table>

footnote

SHWGROUP
Printed 10/1/2014
Alpena Community College
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
</table>
| Structure | 21 $1,903,671 | Immediate 0 1-5 Years 0 6-10 Years 0 11+ Years 100 | Load bearing masonry - classroom building
Steel roof structure and structure - block plant.
Slab on grade
2008 assessment: No reported problems |
| Roof | 6 $543,906 | Immediate 0 1-5 Years 15 6-10 Years 50 11+ Years 35 | EPDM – original, past leaks in corridor repaired, No reported problems.
Metal roofing on plant, No reported problems.
2008 assessment: No reported problems |
| Glazing | 1 $90,651 | Immediate 0 1-5 Years 0 6-10 Years 0 11+ Years 95 | All aluminum storefront frame with insulated, fixed glass.
No windows in plant
2008 assessment: No reported problems |
| Cladding | 5 $453,255 | Immediate 0 1-5 Years 3 6-10 Years 5 11+ Years 10 | Split faced and ground faced concrete block – single wythe construction with sealant.
Metal siding on upper portion of plant, No reported problems.
2008 assessment:
***Water infiltration at main lobby, especially at main window wall. Cause may be inadequate flashing above window heads and/or weeps may not be working.

2008 assessment: No reported problems |
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of System value to budget for repair/replacement:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>$</td>
</tr>
<tr>
<td>HVAC</td>
<td>18</td>
<td>$1,631,718</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td>5</td>
<td>$453,255</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary/Secondary</td>
<td>10</td>
<td>$906,510</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System/Component Notes

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution</td>
<td>7</td>
<td>$634,557</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 3 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adequate capacity. No reported problems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2008 assessment: Frequent tripping problem solved by redistributing loads on panels for certain areas</td>
</tr>
<tr>
<td>Lighting</td>
<td>5</td>
<td>$453,255</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 0 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2x4 lay-in fluorescent throughout, No reported problems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2008 assessment: HID in plant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No reported problems</td>
</tr>
<tr>
<td>Voice/Data</td>
<td>3</td>
<td>$271,953</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 0 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data: Fiber run between buildings. Building wireless.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voice: New system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Central Clock: No system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2008 assessment: No system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No reported problems</td>
</tr>
<tr>
<td>Ceilings</td>
<td>2</td>
<td>$181,302</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 0 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open exposed construction in labs and plant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suspended 2x4 lay-in in classrooms and offices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2008 assessment: No system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No reported problems</td>
</tr>
<tr>
<td>Walls</td>
<td>7</td>
<td>$634,557</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 0 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ground faced concrete block</td>
</tr>
<tr>
<td>System</td>
<td>CRV of System</td>
<td>Pct. of system value to budget for repair/replacement:</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>% $</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
</tr>
</tbody>
</table>
| Doors | 2 $181,302 | 5 5 10 80 | Exterior: \(\text{Aluminum frame typical at entries.} \)
| | | | \(\text{Hollow metal doors at classrooms in good condition.} \) \(\text{(4) motorized roll-up doors}\) \(\text{Interior:} \)
| | | | \(\text{Solid core wood in HM frames at classrooms and offices} \)
| | | | \(\text{Hollow metal doors and frames at labs and plant} \)
| | | | \(\text{All hardware ADA compliant lever handles.} \)
| | | | \(\text{2008 assessment:} \)
| | | | \(\text{***Manual overhead door between 107 & 109 damaged by forklift and will not close} \)
| | | | \(\text{***Interior double door coordinators not operating properly.} \)
| | | | \(\text{Roll-up doors – NE plant door gearbox leaks oil, SE plant door has minor forklift damage} \)
| Floors | 2 $181,302 | 0 0 5 95 | \(\text{Concrete floors with epoxy coating in labs 103, 107, 109 and plant, No reported problems.} \)
| | | | \(\text{Carpet – offices and classrooms, No reported problems.} \)
| | | | \(\text{VCT in corridors and lab 105, No reported problems.} \)
| | | | \(\text{Ceramic tile in lobby and entry vestibules, No reported problems.} \)
| | | | \(\text{2008 assessment:} \)
| | | | \(\text{No reported problems.} \)
| Code (fire, ADA, etc.) | 3 $271,953 | 0 0 5 95 | \(\text{Exit lighting and emergency lighting on battery back-up} \)
| | | | \(\text{Fire protection sprinkling in entire building.} \)
| | | | \(\text{Fire alarm system is ADA compliant.} \)
| | | | \(\text{2008 assessment:} \)
| | | | \(\text{No reported problems.} \)
| Immed. Site, Ext. Lt., etc | 3 $271,953 | 0 2 8 90 | \(\text{Heaving problems at concrete pavers in front drives repaired in 2006} \)
| | | | \(\text{Salt deterioration on bollard light fixtures at front, most lights replaced} \)
Campus: Main Use Types: Notes:
Bldg. No: 07 10 % Classroom
Building: World Center for Concrete Technology 60 % Lab
Area: 44,220sf Yr Built: 1998 Floors: 1 60 % VoTech

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years System/Component Notes</td>
</tr>
<tr>
<td>CRV Totals:</td>
<td>$9,065,100</td>
<td>$55,297 $170,424 $626,398 $8,212,981</td>
</tr>
</tbody>
</table>

Priority Issues Data

<table>
<thead>
<tr>
<th>CRV</th>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9,065,100</td>
<td>$55,297</td>
<td>0</td>
<td>0.6%</td>
<td>GOOD</td>
</tr>
</tbody>
</table>

0-5 Year Cumulative Data

<table>
<thead>
<tr>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>$/YR MAINTAIN</th>
<th>RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>CRV of System</td>
<td>Pct. of system value to budget for repair/replacement:</td>
<td>System/Component Notes</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>20</td>
<td>0 0 0</td>
<td>Load bearing masonry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Steel roof structure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slab on grade</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof</td>
<td>4</td>
<td>0 0 0</td>
<td>Durolast roof</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: building new, under warranty</td>
<td></td>
</tr>
<tr>
<td>Glazing</td>
<td>6</td>
<td>0 0 0</td>
<td>All aluminum storefront frame with insulated, fixed glass</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: building new, under warranty</td>
<td></td>
</tr>
<tr>
<td>Cladding</td>
<td>9</td>
<td>0 0 0</td>
<td>Ground faced concrete block – single wythe construction with sealant. No reported problems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: building new, under warranty</td>
<td></td>
</tr>
<tr>
<td>HVAC</td>
<td>19</td>
<td>0 5 10</td>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(4) Trane RTU’s – gas fired. Provide heating and cooling (4) zones with (2) rooms per zone.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DDC controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: Building HVAC creates negative pressure problems - concerns noted about proper distribution and ventilation throughout labs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>***Desired increase in ventilation for ceramics lab - may be limited due to current pressurization issues.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Building new, under warranty</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>CRV of System</td>
<td>Pct. of system value to budget for repair/replacement:</td>
<td>System/Component Notes</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing</td>
<td>5</td>
<td>$119,765</td>
<td>100 Main – copper service Distribution - copper. Clay traps provided in ceramic lab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: building new, under warranty</td>
<td></td>
</tr>
<tr>
<td>Primary/Secondary</td>
<td>5</td>
<td>$119,765</td>
<td>100 208/ 110 service. Separately metered.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: building new, under warranty</td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td>5</td>
<td>$119,765</td>
<td>100 Adequate capacity. No reported problems.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: building new, under warranty</td>
<td></td>
</tr>
<tr>
<td>Lighting</td>
<td>5</td>
<td>$119,765</td>
<td>100 Pendant mounted fluorescent in classrooms. HID in some rooms.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: building new, under warranty</td>
<td></td>
</tr>
<tr>
<td>Voice/Data</td>
<td>5</td>
<td>$119,765</td>
<td>100 Data: Fiber run between buildings. Building wireless.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Voice: New system</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Central Clock: No system.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: building new, under warranty</td>
<td></td>
</tr>
<tr>
<td>Ceilings</td>
<td>2</td>
<td>$47,906</td>
<td>100 Open exposed construction Suspended 2x4 lay-in in offices.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: building new, under warranty</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td>CRV of System</td>
<td>Pct. of system value to budget for repair/replacement:</td>
<td>System/Component Notes</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>$</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
<td></td>
</tr>
<tr>
<td>Walls</td>
<td>3</td>
<td>$71,859</td>
<td>0 0 0</td>
<td>Painted gypsum board on metal studs Ground faced concrete block at corridor bearing walls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2008 assessment: building new, under warranty</td>
</tr>
<tr>
<td>Doors</td>
<td>4</td>
<td>$95,812</td>
<td>0 0 0</td>
<td>Exterior: Painted aluminum frame typical at entries. (3) pairs of hollow metal doors in good condition. Revolving darkroom door – not ADA accessible (only door).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floors</td>
<td>3</td>
<td>$71,859</td>
<td>0 0 0</td>
<td>Concrete floors typical. Carpet – offices and (1) classroom VCT in gallery and main corridor.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code (fire, ADA, etc.)</td>
<td>2</td>
<td>$47,906</td>
<td>0 0 0</td>
<td>Exit lighting and emergency lighting on battery back-up Fire protection sprinkling in entire building.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immed. Site, Ext. Ltg., etc</td>
<td>3</td>
<td>$71,859</td>
<td>0 0 0</td>
<td>2008 assessment: building new, under warranty</td>
</tr>
</tbody>
</table>

CRV Totals:

$2,395,300 $0 $22,755 $45,511 $2,327,034

$22,755 $0 1.0% $47,906 GOOD
<table>
<thead>
<tr>
<th>Priority Issues Data</th>
<th>0-5 Year Cumulative Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,395,300</td>
<td>$0</td>
</tr>
<tr>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>GOOD</td>
<td>GOOD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DMB</th>
<th>EXCESS</th>
<th>FCI</th>
<th>$/YR MAINT</th>
<th>RATING</th>
</tr>
</thead>
</table>

Campus: Main
Bldg. No: 08
Building: Fine Arts Center
Area: 14,090sf
Yr Built: 2007
Floors: 1
Use Types: 100% VoTech
Notes: Still under warranty
Campus: Oscoda
Bldg. No: 05
Building: Huron Shores Building
Area: 31,140sf
Yr Built: 1977
Floors: 3

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>$</td>
<td>Immediate</td>
</tr>
</tbody>
</table>
| Structure | 17 | $995,234 | 3 | 5 | 5 | 87 | Steel structure. No reported problems.
Slab on grade, lower level ½ story below grade, No reported problems.
2000 assessment:
No evidence of structural settling.
2008 assessment:
***Settlement cracking evident in masonry @ NE stairwell
***Steel lintels at windows rusting, due for repainting |
| Roof | 3 | $175,630 | 10 | 10 | 15 | 65 | Newer Durolast – edge drain
2000 assessment:
Roof replaced 3 years ago.
2008 assessment:
***Some roof leaks @ edges of NE & NW corners
***Downspout at boiler room door loose, pulling off building |
| Glazing | 2 | $117,086 | 0 | 5 | 10 | 85 | Original insulated glazed, sliding aluminum windows in good condition
Hardware in good condition, locks work well.
2008 assessment:
no reported problems. |
| Cladding | 8 | $468,346 | 5 | 15 | 15 | 65 | Brick on concrete block backup.
Metal siding on penthouse in fair condition
Metal soffit panels on stairwell/ elevator tower in fair condition
2008 assessment:
***Evidence of brick damage and replacement at new stair/ elevator tower in SW corner. Brick still appears to be problematic and potentially wet in these areas. |
Building: Huron Shores Building
- **Campus:** Oscoda
- **Bldg. No:** 05
- **Building:** Huron Shores Building
- **Area:** 31,140sf
- **Year Built:** 1977
- **Floors:** 3
- **Use Types:**
 - 20% Administration
 - 80% Classroom
- **Notes:** Renovated 1996

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>$</td>
<td>Immediate</td>
</tr>
</tbody>
</table>
| HVAC | 25 | $1,463,580 | 0 | 5 | 45 | 50 | Generation
| | | | | | | | (1) Hot water boiler, (3) Circulating pumps
| | | | | | | | Complicated system, difficult to maintain. |
| | | | | | | | Distribution
| | | | | | | | Building divided into 3 vertical zones. |
| | | | | | | | AHU's are on each floor, several above ceiling with outside fresh air intake. |
| | | | | | | | Perimeter fin tube in all rooms |
| | | | | | | | RTU serves third floor |
| | | | | | | | Window mounted AC units in various locations |
| | | | | | | | Second floor NW classroom has split system providing heating and cooling |
| | | | | | | | Controls
| | | | | | | | Pneumatic controls |
| | | | | | | | 2000 assessment: |
| | | | | | | | Not air conditioned – some window air units. Hot water boiler 3 years old. |
| | | | | | | | HVAC distribution needs to be redone. Zoning problems. Ventilation units |
| | | | | | | | installed to meet code need to be redone. |
| | | | | | | | 2008 assessment: |
| | | | | | | | ***Most components are original, near or past end of life. |
| | | | | | | | ***Above-ceiling AHU’s are very noisy, several only operate when lights are on - very poor air quality. |
| | | | | | | | ***(2) intake louvers at lower level are covered, should be uncovered for better indoor air quality. |
| | | | | | | | ***Excessive humidity problems evident form sagging ceiling tile |
| | | | | | | | ***Server closet on second floor overheats |
| | | | | | | | ***Fume hood in science lab is older model with asbestos back panel, may not have backflow preventer on water supply. Operation is not continuous to ensure fumes do not build up in hood when room not in use. |
System/Component Notes

Plumbing
- **CRV of System**: 6
- **Value**: $351,259
- **Pct. of system value to budget for repair/replacement:** Immediate: 5, 1-5 Years: 5, 6-10 Years: 10
- **Percentage**: 80

- **Notes**: Main – cast iron service, No reported problems. Water quality improved with switchover to Oscoda water
- **Distribution**: copper, No reported problems.
 - Adequate shut-off valves.
 - Cast iron waste piping
 - Fixtures and valves –original
 - Gas fired domestic water heater in boiler room for lower level, small water heaters above ceilings for second and third floor toilets
 - Toilet rooms original and one unisex ADA compliant toilet room on each floor
 - Acid waste in science lab stored in containers for disposal off-site
 - Eye wash. Shower in science lab

- **2000 assessment**:
 - Original plumbing. 3 ADA bathrooms. Some faucets should be replaced, some parts need replacement

- **2008 assessment**:
 - ***Drinking fountains don't have adequate water flow***
 - Fixtures and valves –original, No reported problems.

Primary/Secondary
- **CRV of System**: 5
- **Value**: $292,716
- **Pct. of system value to budget for repair/replacement:** Immediate: 0, 1-5 Years: 0, 6-10 Years: 5
- **Percentage**: 95

- **Notes**: Square D equipment, No reported problems.

- **2008 assessment**:
 - no reported problems.

Distribution
- **CRV of System**: 4
- **Value**: $234,173
- **Pct. of system value to budget for repair/replacement:** Immediate: 5, 1-5 Years: 0, 6-10 Years: 5
- **Percentage**: 90

- **Notes**: Square D equipment

- **2008 assessment**:
 - ***Panels are not labeled well - difficult to determine circuiting.***
 - ***No GFI outlets in science lab***

Lighting
- **CRV of System**: 4
- **Value**: $234,173
- **Pct. of system value to budget for repair/replacement:** Immediate: 10, 1-5 Years: 25, 6-10 Years: 15
- **Percentage**: 50

- **Notes**: Original 2x4 lay-in fluorescent fixtures T12.
 - Some noisy ballasts, converting to T8 as ballasts fail

- **2000 assessment**:
 - Original lighting needs to be replaced with more efficient ballasts. New lights in labs & I.T. rooms.

- **2008 assessment**:
 - ***Stairway lighting on switches so egress at night may be compromised.***
 - Stairwell lighting level low.
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System %</th>
<th>$</th>
<th>Immediate</th>
<th>1-5 Years</th>
<th>6-10 Years</th>
<th>11+ Years</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice/Data</td>
<td>4</td>
<td>$234,173</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>95</td>
<td>Data: Cat 5 cabling
Phone: Older phone system same as main campus
Central Clock: No system
2000 assessment: Voice/data up to date
2008 assessment: no reported problems.</td>
</tr>
<tr>
<td>Ceilings</td>
<td>3</td>
<td>$175,630</td>
<td>15</td>
<td>45</td>
<td>30</td>
<td>10</td>
<td>2x4 lay-in typical throughout, some 2x2
2000 assessment: Newer lay-in ceiling
2008 assessment: ***Sagging tiles on all floors, especially the 1st floor
***Grid is stained and rusty, due for re-paint. Grid damaged in computer lab
***5+% of ceiling tile is stained or damaged by water</td>
</tr>
<tr>
<td>Walls</td>
<td>7</td>
<td>$409,802</td>
<td>5</td>
<td>15</td>
<td>10</td>
<td>70</td>
<td>Painted CMU exterior walls
Painted gypsum on stud interior walls
Some demountable vinyl covered partitions in office areas
Vinyl wall covering on both gypsum and block walls in some classrooms
2008 assessment: All walls repainted in 2008
***Wood trim on walls in lower level in poor condition – some pulling off in classrooms
Science lab casework and tops in good condition</td>
</tr>
</tbody>
</table>
Campus: Oscoda
Bldg. No: 05
Building: Huron Shores Building
Area: 31,140sf
Yr Built: 1977
Floors: 3

Use Types:
- 20% Administration
- 80% Classroom

Notes: Renovated 1996

<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System</th>
<th>Pct. of System value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
</table>
| Doors | 2 | 75% Immediate 1-5 Years 6-10 Years 11+ Years $117,086 | Exterior:
Aluminum frame doors at entry, hollow metal elsewhere
Interior:
Solid core wood
2000 assessment:
Doors in good shape – original hardware.
Bottom floor door (entry/back of building) ADA compliant
Interior:
Hardware all ADA complaint and in good condition
2008 assessment:
***Original door hardware at end of life., due for replacement
***Closer at main entry needs repair.
***North door sticks & doesn’t close tight
***West lower level hollow metal door rusting at bottom, delaminating, doesn’t close, due for replacement
Interior doors:
***Door finish scratched and veneer damage, most doors have holes where parts were removed - holes should be covered for security and smoke separation.|
| Floors | 4 | 85% VCT in first floor lounge, No reported problems. | VCT and ceramic tile in toilet rooms, No reported problems.
VCT with metal nosings at stairs
Quarry tile at main entry lobby
Carpet in classrooms, offices, conference rooms, corridors.
2008 assessment:
***Carpet worn and end of life, scheduled/budgeted for replacement throughout first and second floor with the exception of a few offices |
<table>
<thead>
<tr>
<th>System</th>
<th>CRV of System %</th>
<th>CRV of System $</th>
<th>Pct. of system value to budget for repair/replacement:</th>
<th>System/Component Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code (fire, ADA, etc.)</td>
<td>3</td>
<td>$175,630</td>
<td>Immediate 1-5 Years 6-10 Years 11+ Years</td>
<td>80 Unisex ADA compliant toilet room on each floor. Main east entry not ADA compliant Fire alarm upgraded to ADA compliant Emergency lighting on battery backup Exit lighting original on battery backup Fire protection sprinkling in entire building Security system for office, computer lab and ITV room Hydraulic elevator, ADA compliant, on service contract</td>
</tr>
<tr>
<td>Immed. Site, Ext. Ltg., etc</td>
<td>3</td>
<td>$175,630</td>
<td>10 10 10</td>
<td>70 Building mounted lighting functioning, No reported problems. Sidewalks in good condition 2000 assessment: ADA strobe. ADA updated in 1996 2008 assessment: ***Emergency lighting - battery replacement required on most lights ***Exit lighting - Several not working. ***Stairway fire doors blocked open ***Treads in poor condition on some stairs, especially front entry stair One handrail cover in stairwell loose</td>
</tr>
</tbody>
</table>

CRV Totals:

- $5,854,320
- $208,414
- $477,127
- $1,088,904
- $4,079,876

- $685,541
- $392,825
- 11.7%
- $117,086
- **POOR**
<table>
<thead>
<tr>
<th>Priority Issues Data</th>
<th>0-5 Year Cumulative Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRV</td>
<td>DMB</td>
</tr>
<tr>
<td>$5,854,320</td>
<td>$208,414</td>
</tr>
<tr>
<td>DMB</td>
<td>EXCESS</td>
</tr>
<tr>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>EXCESS</td>
<td>FCI</td>
</tr>
<tr>
<td>3.6%</td>
<td>3.6%</td>
</tr>
<tr>
<td>FCI</td>
<td>GOOD</td>
</tr>
<tr>
<td>RATING</td>
<td>RATING</td>
</tr>
<tr>
<td>DMB</td>
<td>$/YR MAINTAIN</td>
</tr>
<tr>
<td>EXCESS</td>
<td>RATING</td>
</tr>
<tr>
<td>FCI</td>
<td></td>
</tr>
</tbody>
</table>
V. Implementation Plan

a. First priority: repurposing Van Lare Hall in order to (1) expand the ACC nursing program; (2) create a centralized center for student success; and (3) establish a Foundation and alumni center to support growth of ACC’s endowment. Estimated cost is $6.75 million. A more detailed cost breakdown is the subject of an Attachment B document at the end of this plan.

b. Addressing ACC’s deferred maintenance campus-wide would entail a set of projects estimated to represent a total of $7,855,000 in expenditures. Approximately $2.425 million is covered under the Van Lare Hall repurposing proposal listed above.

c. The State Building Authority participates in financing for construction of the ACC Electrical Power Technology Center, which slightly ahead of scheduled completion in January 2015.

d. Rate of return on planned expenditures expressed as number of years to break even on operational savings:
 - Less than 15 years for heating and air conditioning system in Van Lare Hall.

e. Distance learning methodologies are relevant for nursing. As for centralizing student services, many of the ACC services (such as admissions, registration, and financial aid) will be conducted online. Others (such as career advising, academic advising, and tutoring) are best conducted in person in a “one stop shop” environment.

f. Maintenance projects associated with the buildings referenced in Part IV, Facilities Assessment, will require expenditures in excess of $1,000,000.

g. ACC has budgeted $191,000 for non-routine maintenance projects for FY16, such as resurfacing of driveway into Parking Lot B, a second science classroom/laboratory at the Huron Shores Campus, and roof repair over the Newport Center Building.

VI. Source Material: Economic Contribution Study

Fact Sheet: The Economic Contribution of Alpena Community College (CCBenefits 2006)

What role does Alpena Community College (ACC) play in the local economy? The results of this study demonstrate that ACC is a sound investment from multiple perspectives. Students benefit from improved lifestyles and increased earnings. Taxpayers benefit from an enlarged economy and lower
social costs. And the community as a whole benefits from increased job and investment opportunities, higher business revenues, greater availability of public funds, and an eased tax burden.

ACC stimulates the state and local economy

• The ACC Service Area economy receives roughly $8.7 million in regional income annually due to ACC operations and capital spending.

• ACC activities encourage new business, assist existing business, and create long-term economic growth. The college enhances worker skills and provides customized training to local business and industry. It is estimated that the present-day ACC Service Area workforce embodies around 530,100 credit and non-credit hours of past and present ACC training.

• ACC skills embodied in the workforce of the ACC Service Area where the former students are employed increase regional income by $69.4 million. Associated indirect effects increase income by another $9.9 million.

• Altogether, the ACC Service Area economy annually receives roughly $88.1 million in income due to the past and present efforts of ACC. Clearly it is accurate to describe ACC as an engine of economic growth.

The regional economy is $88.1 million stronger due to the actions of ACC.

ACC leverages taxpayer dollars

• The state and local community will see avoided social costs amounting to $12 per year for every credit earned by ACC students, including savings associated with improved health, reduced crime, and fewer welfare and unemployment claims.

• This translates to $387,000 worth of social savings to the State of Michigan each year as long as students are in the workforce.

• Students benefit from higher earnings, thereby expanding the tax base and reducing the tax burden on state and local taxpayers. When aggregated together, ACC students generate about $3.5 million annually in higher earnings due to their ACC education.

Students see their annual income increase by $111 per year for every credit completed at ACC.
ACC generates a return on government investment

- State and local government allocated around $7.8 million in support of ACC in fiscal year 2005.

- For every dollar appropriated by state and local government, taxpayers will see a cumulative return of $1.90 over the course of the students’ working career (in the form of higher tax receipts and avoided social costs).

ACC returns $1.90 for every dollar of taxpayer financial support.

- State and local government will see a rate of return of 8% on their support for ACC, which compares very favorably with private sector rates of return on similar long-term investments.

ACC increases students’ earning potential

- A total of 3,479 credit and non-credit students attended the college in academic year 2004-2005. As many as 75% of these students stay in the region initially after they leave the college and contribute to the local economy.

- Studies demonstrate that education increases lifetime earnings. The average annual earnings of a student with a one-year certificate are $25,963, or 84% more than someone without a high school diploma or GED, and 16% more than a student with a high school diploma. The average earnings of a student with an Associate Degree are $30,586, or 117% more than someone without a high school diploma or GED, and 37% more than a student with a high school diploma or GED.

- ACC students will see their annual income increase, on average, by about $111 per year for every credit completed at ACC during the analysis year.

- Throughout his or her working career, the average ACC student’s discounted lifetime earnings (i.e., future values expressed in present value terms) will increase $5.20 for every education dollar invested (in the form of tuition, fees, books, and foregone earnings from employment).

- Students enjoy an attractive 16% annual rate of return on their ACC educational investment, and recover all costs (including wages foregone while attending) in 9 years.
VII. Attachment B (First Priority Project)

FISCAL YEAR 2016
PRIORITY CAPITAL OUTLAY PROJECT REQUEST

Institution Name: Alpena Community College

Project Title: Center for Health Sciences and Student Success

Project Focus: X Academic Research Administrative/Support

Type of Project: X Renovation Addition X New Construction

Program Focus of Occupants: Nursing, Student Services, Alumni

Approximate Square Footage: 36,000 square feet repurposing existing space; 7500 square feet of new construction

Total Estimated Cost: $6.7 million

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical/Heating system replacement</td>
<td>$1,080,000</td>
</tr>
<tr>
<td>New construction</td>
<td>$1,875,000</td>
</tr>
<tr>
<td>Elevator/Stairs</td>
<td>$150,000</td>
</tr>
<tr>
<td>Classroom/Lab technology</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>Exterior improvements</td>
<td>$760,000</td>
</tr>
<tr>
<td>Interior renovations</td>
<td>$360,000</td>
</tr>
<tr>
<td>Bathroom remodel</td>
<td>$225,000</td>
</tr>
<tr>
<td>Professional fees</td>
<td>$805,000</td>
</tr>
<tr>
<td>Furniture and Contingencies</td>
<td>$445,000</td>
</tr>
<tr>
<td>Total</td>
<td>$6,700,000</td>
</tr>
</tbody>
</table>
Estimated Start/Completion Dates: October of 2016/August of 2017

Is the Five-Year Plan posted on the institution’s public internet site? X Yes No

Is the requested project the top priority in the Five-Year Capital Outlay Plan? X Yes No

Is the requested project focused on a single, stand-alone facility? X Yes No (part of an existing building)

Describe the project purpose.

Constructed in 1952, Van Lare Hall is the oldest building on the main campus of Alpena Community College and a central piece of ACC’s legacy. Occupying 40,000 square feet on ACC’s most picturesque property, Van Lare Hall houses key administrative and academic support functions along with a dozen general purpose classrooms. It is a solid, functional building that has served as the focal point of higher education in Northeast Michigan for more than 60 years. The **Center for Health Science and Student Success** proposes to repurpose Van Lare Hall to provide space and updated technology to house an enhanced Nursing program, centralize critical student support services, and offer a second floor Foundation-Alumni community gathering space overlooking the Thunder Bay River. The proposal will accomplish three strategic goals at Alpena Community College:

Nursing Program expansion

Increasing the physical space and enhance technology of the nursing labs and classrooms will support a growing nursing program and a rapidly changing healthcare marketplace. In spring 2014 the State Board of Nursing granted a major program change of increasing annual enrollment. The program currently admits 20 new students each for the fall and spring semesters for both the LPN certificate and RN associate’s degree, yielding annual capacity of 80 students. ACC plans for the nursing program to double in size, thus serving 160 students per year, a total requiring more lab, classroom, technology, and office space available to the Nursing program in its current location, a space the program has occupied for the past 20 years. Pertinent project details include:

- Triple the current lab space from 1460 square feet to 7500 square feet.
- Double current classroom space with enhanced computer and Wi-Fi access.
- Create a smart room to support virtual lab experiences and advanced simulations.
- Upgrade technology in basic and advanced lab courses.
• Create a modern lecture hall with high-speed connectivity.
• Create office centralized office space for director and six fulltime faculty.
• Create a conference room for staff and student collaboration.

Center for Student Success:

The purpose of this renovation is to create an efficient, effective, and attractive Student Services Center known to students as a “one-stop shop” for a range of support services known to correlate to completion and student success.

• Centralize student services next to administrative services and academic leadership offices.
• Create dedicated meeting spaces with enhanced mobile technology for student projects, collaboration, and leadership.
• Coordinate new student orientation, placement testing, developmental education, career exploration, job placement, internships, web-based interactive kiosks, technology support, and faculty front door offering guided pathways for students entering Van Lare Hall.

Alumni Center and Foundation:

The purpose of this renovation is to create a meeting space for stakeholders such as donors, lifelong learners, alumni, and employers to connect or reconnect to the College

• Create a dedicated space for community gatherings including dedicated presentation space for Association of Lifelong Learners, a robust group of plus-50 learners.
• Create office space for ACC Foundation and Alumni services.
• Create dedicated interview space for employers and job seekers to connect.
• Create community greenspace between Van Lare Hall and Thunder Bay River with opportunities for student art or sculpture championing ACC’s unique history of applied technical programs and industry alliances.

Describe the scope of the project.

The following general infrastructure upgrades will be required at an estimated cost of $6.7 million:
Van Lare Hall physical infrastructure:

- Replacement of existing steam boiler system installed in 1952 with high-efficiency HVAC system (geo-thermal, forced air, or hot water).
- Construction of second story occupying approximately 10,000 square feet located in the middle of the building.
- Installation of ADA-compliant elevator to access second floor.
- Redesign of main entrance and outdoor courtyard overlooking the Thunder Bay River.
- Renovation of restrooms throughout the building.
- Installation of smart rooms and technology throughout the building.
- Furnishing and equipping of new Center for Student Success.
- Removal of non-functional chimney.
- Update of signage.

Nursing Expansion

- The proposed expansion incorporates simulations and advanced training technologies, supported by high speed fiber connectivity hosted by the College and available at low cost to regional health care providers throughout the region through an affiliation with ACC, Merit, Inc., and the Alpena Fiber Consortium. Simulation technology coupled with high speed connectivity will offer training access to both to ACC nursing students as well as incumbent health care professionals in the new teaching space with distance learning opportunities to incumbent health care providers at remote satellite sites.

- Van Lare Hall is adjacent to both Alpena Regional Medical Center and Northeastern Michigan Community Mental Health, which provides convenient clinical access for students in these expanded programs.

- Alpena Regional Medical Center is currently in final negotiations to be acquired, thereby connecting the primary regional healthcare provider into a statewide health management system network. It is anticipated that the statewide health management system provider will require a Bachelor of Science in Nursing degree among its nursing staff as an entry level credential.

- An estimated 200 nurses at ARMC alone will need to access an affordable BSN degree in order to maintain their employment, an affordable credential ACC will provide in the proposed new teaching space.
ACC currently partners with UM-Flint to offer an approved BSN program. State of Michigan authorization for community colleges to offer BSN degrees could provide additional opportunities for local nursing students should SB 98 pass.

An equipment list for Nursing expansion is detailed below:

Materials List for Nursing Program

Basic skills Lab

- 10 beds (Hill-Rom)
- In wall suction and canisters
- Sim man
- Noelle
- Supply room
- Littman 3200 X2 sets of 4
- Recording and briefing room
- Crash Cart with defibrillator X2
- Tables and chairs
- Working Call lights
- Clocks on every bed
- Feeding pumps
- Patient lifts
- Gowns & linens
- Hand sanitizer
- Linen carts
- Med carts
- Vital sign machines X 3
- Wound care cart and simulator
- Thermometer per bed
- Ultrasound handheld X 2
- Ten mannequins
- Mannequin cart
- Pixis X 2 and medication carts
- Sharps containers one per max 2 beds
- Sinks X 3

Advanced Skills lab

- 10 beds
- OB delivery bed/warmer
- 5 IV pumps
- 2 sim man pediatric and adult plus telemetry cardiac monitor (Phillips software)
- Recording and control room for advanced simulation
- Debriefing room
- IV supplies and tubing
- IV poles X5
- Otoscopes
- Ophthalmoscopes
- Computers on wheels (COWS) for student charting and software for computerize charting
- Sinks X3
- Computer Lab
- Student lounge
- Student study areas
- Student conference room
- Virtual classroom with software
- Large lecture hall Smart/whiteboard/podium accessible
- 4 Smart classrooms
- Anatomage Table

Center for Student Success
A resource and activities list for Student Success Center is outlined below:

<table>
<thead>
<tr>
<th>ACCESS & ALIGNMENT</th>
<th>ENTRY & INTAKE</th>
<th>TEACHING & LEARNING</th>
<th>ACCELERATION & PROGRESS</th>
<th>COMPLETION & SUCCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consortium for Michigan Veteran Educators (COP)</td>
<td>Accelerated Learning Program (G, COP)</td>
<td>Achieving the Dream (G, COP, PI)</td>
<td>Adult Completion Policy Project (G, PI)</td>
<td>Committee on the Transferability of Core College Courses (PI)</td>
</tr>
<tr>
<td>12 x 12 Pilot: Enhanced Dual Enrollment (G)</td>
<td>Alternative Credit Task Force (PI)</td>
<td>Benefits Access for Community Colleges (G)</td>
<td>Benefits Access for Community Colleges (G)</td>
<td>Committee on the Transferability of Core College Courses (PI)</td>
</tr>
<tr>
<td>Carnegie Math Pathways (G, COP)</td>
<td>College Readiness Benchmarks Taskforce (PI)</td>
<td>Degree Qualifications Profile (G, COP)</td>
<td>Faculty Leadership Initiative (COP)</td>
<td>Credit When It's Due (G, COP)</td>
</tr>
<tr>
<td>MCAN College Access & Completion (G)</td>
<td>Promise Zones Partnerships (G)</td>
<td>Pathways to Credentials (G, COP)</td>
<td>Pathways to Credentials (G, COP)</td>
<td>Project Win-Win (G, COP)</td>
</tr>
</tbody>
</table>

Legend:
- **COP:** Community of Practice
- **G:** Grant
- **PI:** Policy Initiative
Alumni Center and Foundation

A materials list for the Alumni and Foundation Center is outlined below:

- Alumni tracking software
- Budgeting software to facilitate revenue and expense tracking of Foundation scholarships and endowments.
- Hardware and software for donor presentations
- Conference table and furniture

Please provide detailed, yet appropriately concise responses to the following questions that will enhance our understanding of the requested project:

1. **How does the project enhance Michigan’s job creation, talent enhancement and economic growth initiatives on a local, regional and/or statewide basis?**

 Prosperity Region 3 real-time labor demand from September 2015 has Healthcare Occupations as the top job category in the Northeast Michigan region served by Alpena Community College with registered nursing among the top in-demand occupations. The Center for Health Sciences and Student Success project directly targets job creation and talent enhancement in this growth area.

2. **How does the project enhance the core academic and/or research mission of the institution?**

 The mission of Alpena Community College is to provide lifelong learning needs by providing educational opportunities through effective stewardship of resources. The College Goals are:

 1. Present and position ACC as a compelling, attractive institution of choice for all learners.
 2. Achieve excellence in program areas of transfer, occupational/technical, developmental, community and continuing education.
 3. Serve as primary center for regional economic development, diverse programming, recreational/wellness opportunities, and cultural enrichment.
 4. Foster an environment of learning that embraces change, cultural diversity, personal accountability, and global thinking.
 5. Conduct college business with a view toward developing partnerships and alliances to expand learning opportunities.
The Center for Health Sciences and Student Success aligns with the College mission and goals.

3. How does the project support investment in or adaptive re-purposing of existing facilities and infrastructure?

The project supports adaptive re-purposing of existing facilities and infrastructure by investing in a legacy building on the campus of ACC built in 1952 and launching it into the 21st century as a regional leader in advanced health care technology. Doubling the size of the Nursing program while saving an historic building without adding a new building on campus in a climate of demographic and enrollment challenges makes sense for ACC and the communities it serves. The potential rewards — higher return on investment, sustainable building, saving historic resources — make adaptive reuse a sensible development opportunity.

4. Does the project address or mitigate any current health/safety deficiencies relative to existing facilities? If yes, please explain.

The project mitigates three current health and safety deficiencies in Van Lare Hall:

1) Total replacement of the HVAC system will provide years of additional life to the building and safety to students and staff who work in the facility.
2) Van Lare Hall is currently not equipped with air conditioning, making the facility less than optimal for teaching and learning during summer months.
3) Remodeling bathrooms to provide modern ADA specifications will support easier access to students with disabilities.

5. How does the institution measure utilization of its existing facilities, and how does it compare relative to established benchmarks for educational facilities? How does the project help to improve the utilization of existing space and infrastructure, or conversely how does current utilization support the need for additional space and infrastructure?

According to 2014 Michigan Community Colleges Activities Classification Structure data (Table 37), ACC is the second most efficient community college in the state in terms of cost per square foot. At $3.10 per square foot, ACC is 48 percent below the community college state aggregate of $5.97 cost per square foot.

The Center for Health Science and Student Success improves utilization of existing space by focusing resources on repurposing existing infrastructure to accommodate a program producing high-wage, high-demand health care jobs in which there are current and future projected labor market shortages.
6. **How does the institution intend to integrate sustainable design principles to enhance the efficiency and operations of the facility?**

The institution intends to integrate sustainable design principles in the following three ways:

1) Replacing an aging and inefficient boiler system with a modern energy efficient heating and climate control HVAC system.
2) Installing energy efficient windows throughout the building.
3) Updating lights, water, plumbing, bathroom fixtures, drinking fountains, and electrical switches.

7. **Are match resources currently available for the project? If yes, what is the source of the match resources? If no, identify the intended source and the estimated timeline for securing said resources?**

The following match resources are currently in place or may be accessed with reasonable certainty:

- Local fundraising: $1.835 million
- Local Foundation support: $500,000
- Alumni (local and beyond Alpena): $1 million
- Total: $3.35 million

8. **If authorized for construction, the state typically provides a maximum of 75% of the total cost for university projects and 50% of the total cost for community college projects. Does the institution intend to commit additional resources that would reduce the state share from the amounts indicated? If so, by what amount?**

The College does not anticipate contributing additional resources that reduce the state share from the amounts indicated.

9. **Will the completed project increase operating costs to the institution? If yes, please provide an estimated cost (annually, and over a five-year period) and indicate whether the institution has identified available funds to support the additional cost.**

It is not anticipated that the project will increase operating costs to the institution. On the contrary, a decrease in operating costs to the College is anticipated based on three main factors: (1) increased energy efficiency will lower Van Lare Hall operating costs an estimated 30 percent annually; (2) reconfiguring existing faculty should allow for an expanded program with no additional instructional costs; and (3) enhanced opportunities to provide BSN or incumbent worker training should enhance revenue with no additional cost.
10. What impact, if any, will the project have on tuition costs?

No increase of tuition or fees is anticipated at this time based upon this project. Repurposing Van Lare Hall should contribute to the College’s persistent efforts to restrain costs and thereby minimize passing along tuition increases to students.

11. If this project is not authorized, what are the impacts to the institution and its students?

If the project is not authorized, the following impacts to the institution and its students are projected: (1) a Nursing program in which future growth will be confined by inadequate lab and instructional space and aging technology; (2) ACC Nursing students will become increasingly underprepared compared to peer graduates from more technologically-enhanced programs; and (3) Nursing education programs which do not keep pace with technology ultimately may begin to impact patient care.

12. What alternatives to this project were considered? Why is the requested project preferable to those alternatives?

Two alternatives were considered. One, tear down Van Lare Hall and build a brand new structure strictly for the Nursing program. Two, tear down Van Lare Hall and build a new Nursing facility and administrative offices across Johnson Street in closer proximity to existing occupational/technical buildings.

The Center for Health Sciences and Student Success is considered preferable to these alternatives based on the following factors:

1) The business office and academic administrative functions currently operating efficiently in Van Lare Hall would need to relocate. Currently there is not existing space suitable for these functions elsewhere on campus.

2) While the cost of repurposing existing building tends to be at a premium compared to new construction, replacing 40,000 square feet of functional administrative and instructional space with an equivalent amount of new construction was deemed to be cost-prohibitive.